共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Branched peptides as therapeutics 总被引:1,自引:0,他引:1
The concept of 'magic bullet', initially ascribed to immunoglobulins by Paul Ehrlich at the beginning of the 20th century and strengthened by the hybridoma technology of Kohler and Milstein in the mid 70s, can nowadays be attributed to different target-specific molecules, such as peptides. This attribution is increasingly valid in light of the explosion of new technologies for peptide library construction and screening, not to mention improvements in peptide synthesis and conjugation and in-vivo peptide stability, which make peptide molecules specific bullets for targeting pathological markers and pathogens. Today, hundreds of peptides are being developed and dozens are in clinical trials for a variety of diseases, demonstrating that the general reluctance towards peptide drugs that existed a decade ago has now been overcome. In spite of this progress, the development of new peptide drugs has largely been limited by their short half-life. Branched peptides such as Multiple Antigen Peptides (MAPs) were invented in the 80s by Tam [Tam, J.P., (1998) Proc. Natl. Acad. Sci. USA, 85, 5409] and have been extensively tested to reproduce single epitopes to stimulate the immune system for new vaccine discovery. In our lab we discovered that MAP molecules acquire strong resistance to proteases and peptidases. This resistance renders MAPs very stable and thus suitable for drug development. Here we report our experience with several MAP molecules in different biotechnological applications ranging from antimicrobial and anti toxin peptides to peptides for tumor targeting. 相似文献
3.
《中国化学快报》2023,34(7):107853
The accurate delivery of nanoparticles and organic small molecule drugs remains a serious challenge in nanoparticle-based tumor therapy. Dual-targeted therapy combining tumor cell targeting and organelle targeting is an effective solution. Here, an anticancer nanoformulation accurate delivery system was prepared using hyaluronic acid (HA) targeting CD44 receptors on the surface of tumor cells and IR780 iodine (IR780) targeting mitochondrial for delivery. The system is based on an ultra-small Janus structured inorganic sensitizer TiO2-x@NaGdF4 nanoparticles (TN NPs) prepared by one-step pyrolysis, further loaded with organic small molecule acoustic sensitizer IR780 and mitochondrial hexokinase II inhibitor lonidamine (LND), followed by encapsulation of HA. Ultra-small size nanoparticles exhibit strong tissue penetration, tumor inhibition and in vivo metabolism. Under ultrasound radiation, TN NPs and IR780 could produce a synergistic effect, effectively increased the efficiency of reactive oxygen species (ROS) production. Meanwhile, the released IR780 could smoothly target the mitochondria, and the ROS produced by IR780 can destroy the mitochondrial structure and disrupt the mitochondrial respiration. LND could inhibit the energy metabolism of tumor cells by reducing the activity of hexokinase II (HK II), which further accelerates the process of apoptosis. Furthermore, since the Janus structure allows the integration of multifunctional components into a single system, TN NPs can not only serve as an acoustic sensitizer to generate ROS, but the Gd element contained can also act as the nuclear magnetic resonance (MR) imaging contrast agent, suggesting that the nanoformulation can enable imaging-guided diagnosis and therapy. In conclusion, a new scheme to enhance sonodynamic therapy (SDT) and chemotherapy synergistically is proposed here based on ultra-small dual-targeted nanoformulation with Janus structure in the ultrasound radiation environment. 相似文献
4.
Charles E. McKenna Boris A. Kashemirov Gordon L. Amidon Phillip E. Kish Jae-Seung Kim 《Journal of organometallic chemistry》2005,690(10):2673-2678
Cidofovir (HPMPC, Vistide®) is a broad-spectrum anti-viral agent that is used to treat AIDS-related CMV retinitis. Currently, cidofovir is of particular interest as a potential therapy for orthopox virus infections, including smallpox. An important limitation of cidofovir and analogous nucleotide drugs in a therapeutic role is their low oral bioavailability and poor transport into cells. In principle, bioavailability of a drug can be improved by structural modification targeting transporters expressed in human intestine. To be effective, the transported prodrug must be cleaved by endogenous enzymes to its parent compound. In this work, three examples of novel cyclic cidofovir (cHPMPC) prodrugs incorporating dipeptides were synthesized and evaluated in a rat oral bioavailability model, in which the prodrugs showed significantly enhanced transport vs. HPMPC and cHPMPC. The prodrugs inhibited Gly-Sar uptake in a competitive binding assay using DC5 cells over-expressing hPepT1. 相似文献
5.
Maraval A Franco S Vialas C Pratviel G Blasco MA Meunier B 《Organic & biomolecular chemistry》2003,1(6):921-927
A series of metalloporphyrins was prepared in order to target the G-quadruplex structure of telomeric DNA for the design of antitelomerase compounds. The initial cationic tetramethylpyridiniumyl porphyrin was modified by the replacement of one or two methylpyridiniumyl groups by one or two 4-aminoquinoline moieties, at the meso position, in order to increase the cell penetration and the quadruplex affinity. The porphyrins were either metallated by manganese or by nickel. The degradation of quadruplex DNA was assayed in vitro with the manganese redox-active derivatives. All porphyrins complexes were capable of inhibiting the telomerase enzyme with IC50 values in the micromolar range (TRAP assay). 相似文献
6.
Alzheimer's disease (AD) is one of the most well-known neurodegenerative diseases and explains 50-60% of dementia in patients. The prevalence rate of AD is positively correlated with age and AD affects ≥ 40% of those over 85 years old. The major AD therapeutics available on the market are acetylcholinesterase inhibitors, such as tacrine and donepezil. New therapeutic agents that can block the disease-inducing mechanisms are essential. Diverse efforts have been made to discover anti-AD agents from natural sources. In this review article, we describe some representative terpenoids such as ginsenosides, gingkolides, and canabinoids as potential anti-AD agents. These compounds exhibit promising in vitro and in vivo biological activities, but are still waiting clinical trials. Additionally, we also discuss some terpenoids including cornel iridoid glycoside, oleanolic acid, tenuifolin, cryptotanshinone, and ursolic acid, which are under investigation for their in vitro and in vivo animal studies. 相似文献
7.
Hottin A Dubar F Steenackers A Delannoy P Biot C Behr JB 《Organic & biomolecular chemistry》2012,10(29):5592-5597
We prepared a series of new iminosugar-ferrocene hybrids displaying potent inhibition of fucosidase (bovine kidney) and inactivation of MDA-MB-231 breast cancer cells proliferation at low micromolar concentrations. The synthetic route brought to light an unprecedented isomerisation of a 2-ethanalylpyrrolidine. 相似文献
8.
A series of neamine-heterocycle conjugates were designed and synthesized. All new compounds displayed more potent inhibitory effect on HIV replication than neamine, among them two compounds displayed stronger anti-HIV activity than neomycin B. The results suggested that itmight be a promising approach to modify neamine for the discovery of new anti-HIV agents. 相似文献
9.
Huan Wang Xinchen Liu Xiangyu Yan Jiawen Fan Daowei Li Jinsong Ren Xiaogang Qu 《Chemical science》2022,13(22):6704
Ultrasound (US)-mediated sonodynamic therapy (SDT) has emerged as a spatiotemporally controllable therapeutic modality in combating cancer because of its high tissue-penetration depth and minimal invasiveness. However, the elevated nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant program in cancer cells can serve as a chief reactive oxygen species (ROS) detoxification system to alleviate oxidative injury and promote tumorigenesis, and thus greatly antagonize the therapeutic efficacy of ROS-mediated anticancer therapies. Herein, we report that vanadium carbide MXene-derived carbon dots (PMQDs) can act as high-efficacy sonosensitizers to efficiently generate ROS upon US irradiation and simultaneously hinder the Nrf2 antioxidant program for enhanced sonodynamic therapy of cancer. These PMQDs show superior US-triggered ROS generating ability because of their efficient migration/separation of electron–hole pairs and narrow bandgap. Importantly, these PMQDs can serve as efficient redox homeostasis regulators to perturb the Nrf2 antioxidant mechanism and thus reduce its effects on ROS neutralization for enhanced SDT efficacy. Overall, the present study will not only provide a new paradigm to augment SDT by perturbing the Nrf2 antioxidant program, but also give valuable insights into developing high-efficacy MXene-derived nanoagents for cancer therapy.A redox homeostasis regulator has been developed as a high-efficacy sonosensitizer to efficiently generate reactive oxygen species upon ultrasound irradiation and simultaneously hinder the Nrf2 antioxidant program for enhanced sonodynamic therapy. 相似文献
10.
Sonodynamic therapy (SDT) has unique advantages in deep tumour ablation due to its deep penetration depth, showing great preclinical and clinical potential. Herein, a platinum(ii)–cyanine complex has been designed to investigate its potential as a SDT anticancer agent. It generates singlet oxygen (1O2) under ultrasound (US) irradiation or light irradiation, and exhibits US-cytotoxicity in breast cancer 4T1 cells but with negligible dark-cytotoxicity. Mechanistic investigations reveal that Pt-Cy reduces the cellular GSH and GPX4, and triggers cancer cell ferroptosis under US irradiation. The metabolomics analysis illustrates that Pt-Cy upon US treatment significantly dysregulates glutathione metabolism, and finally induces ferroptosis. In vivo studies further demonstrate that Pt-Cy inhibits tumor growth under US irradiation and its efficiency for SDT is better than that for PDT in vivo. This is the first example of platinum(ii) complexes for sonodynamic therapy. This work extends the biological applications of metal complexes from PDT to SDT.A novel platinum(ii)–cyanine complex showed a greater excellent sonodynamic therapeutic effect than photodynamic therapy in vivo. This work expands the biological applications of metal complexes from traditional photodynamic therapy to sonodynamic therapy. 相似文献
11.
Fan Jiang Chunzheng Yang Binbin Ding Shuang Liang Yajie Zhao Ziyong Cheng Min Liu Bengang Xing Ping'an Ma Jun Lin 《中国化学快报》2022,33(6):2959-2964
Compared with traditional photodynamic therapy (PDT),ultrasound (US) triggered sonodynamic therapy (SDT) has a wide application prospect in tumor therapy because of its deeper penetration depth.Herein,a novel MnSiO3-Pt (MP) nanocomposite composed of Mn Si O3nanosphere and noble metallic Pt was successfully constructed.After modification with bovine serum albumin (BSA) and chlorine e6 (Ce6),the multifunctional nanoplatform Mn Si O3-Pt@BSA-Ce6 (MPBC) realized the m... 相似文献
12.
13.
Adams DJ 《Macromolecular bioscience》2011,11(2):160-173
Dipeptide and tripeptide conjugates are receiving significant current interest as LMWG, driven by the accessibility of these materials, their relatively low cost and also the large number of examples that successfully form hydrogels. Their behaviour can easily modified by changes in the amino acids or the aromatic end groups chosen. The assembly process has been relatively well described for a small subset of these gelators, giving a good idea of the behaviour of these molecules and allowing an understanding of the conditions under which assembly will occur. Here, we critically review the literature in this area and consider the importance of gelator choice and method of assembly on the outcome of the gelation. We also discuss the applications of these hydrogels. 相似文献
14.
de Miguel G Wielopolski M Schuster DI Fazio MA Lee OP Haley CK Ortiz AL Echegoyen L Clark T Guldi DM 《Journal of the American Chemical Society》2011,133(33):13036-13054
Aromatic triazoles have been frequently used as π-conjugated linkers in intramolecular electron transfer processes. To gain a deeper understanding of the electron-mediating function of triazoles, we have synthesized a family of new triazole-based electron donor-acceptor conjugates. We have connected zinc(II)porphyrins and fullerenes through a central triazole moiety--(ZnP-Tri-C(60))--each with a single change in their connection through the linker. An extensive photophysical and computational investigation reveals that the electron transfer dynamics--charge separation and charge recombination--in the different ZnP-Tri-C(60) conjugates reflect a significant influence of the connectivity at the triazole linker. Except for the m4m-ZnP-Tri-C(60)17, the conjugates exhibit through-bond photoinduced electron transfer with varying rate constants. Since the through-bond distance is nearly the same for all the synthesized ZnP-Tri-C(60) conjugates, the variation in charge separation and charge recombination dynamics is mainly associated with the electronic properties of the conjugates, including orbital energies, electron affinity, and the energies of the excited states. The changes of the electronic couplings are, in turn, a consequence of the different connectivity patterns at the triazole moieties. 相似文献
15.
16.
Bacterial infection is the leading cause of many severe inflammation diseases. The development of novel and effective therapeutic approaches to counter bacterial infections, especially for drug-resistant bacteria, is essential. Herein, we have successfully developed an ultrasound-active tricarbonyl rhenium(Ⅰ) complex with tetraphenylethylene(TPE) modification(RePyTPE) for CO gas therapy and sonodynamic therapy of bacterial infections. RePy-TPE produced reactive oxygen species and released CO und... 相似文献
17.
This feature article covers recent reports of work towards the development of (99m)Tc-carbohydrate based agents for use in SPECT imaging, particularly of cancerous tissue. An outline of some of the key biological functions and coordination chemistry of carbohydrates is given, along with an introduction to bioconjugation and molecular imaging. Technetium coordination chemistry and the subset of this involving bioconjugates are discussed before moving into the focus of the article: glycoconjugates of (99m)Tc(v) and the more recently developed [(99m)Tc(I)(CO)(3)](+). Significant work in the last decade has featured the very attractive [(99m)Tc(CO)(3)](+) core, and the ligand sets designed for this core are discussed in detail. 相似文献
18.
Maintaining a good proportion of gut probiotic bacteria is imperative to health. This may be achieved by consuming “prebiotics,” e.g., galacto‐oligosaccharides (GOS) that selectively promote probiotic bacteria, as they often uniquely express transporters for such oligosaccharides. Proteins are an important source for amino acids essential to probiotic bacteria. As most protein digestion products are absorbed in the small intestine, and there is great competition on the residuals by colonic bacteria, amino acids are scarce (<0.01 mM) in the colonic intercellular fluid, thus limiting probiotics' proliferation. However, no existing prebiotic product contains protein. Herein, we propose a new type of prebiotics: protein‐oligosaccharide conjugates. These conjugates were designed to be selectively targeted to probiotic bacteria in the colon, for enhancing their competitive advantage over undesired microorganisms. The approach was inspired by active targeting of chemotherapy, achieved by conjugating drugs to ligands, which selectively bind to proteins uniquely expressed on cancer cells; except here, we aimed to promote, not eliminate, the targeted cells. We formed these conjugates by mild Maillard‐reaction‐based covalent conjugation of GOS to lactoferrin hydrolysate (LFH), formed by peptic digestion, hence it resists gastric digestion. LFH‐GOS conjugates comprised 76% ± 1% LFH and 25% ± 4% GOS, and self‐assembled into 0.2 to 1.5‐μm microparticles. Most of the conjugates' protein content endured simulated gastrointestinal digestion, hence is expected to reach the colon. Remarkably, we found that the growth rate of a model probiotic bacterium (Lactobacillus casei) on the conjugates was double that on the unconjugated components (0.082 and 0.041 h?1, respectively). This study proposes the next generation of prebiotics. 相似文献
19.
The molecular details of antigen processing, including the identity of the enzymes involved, their intracellular location and their substrate specificity, are still incompletely understood. Selective inhibition of proteolytic antigen processing enzymes such as cathepsins D and E, using small molecular inhibitors such as pepstatin, has proven to be a valuable tool in investigating these pathways. However, pepstatin is poorly soluble in water and has limited access to the antigen processing compartment in antigen presenting cells. We have synthesised mannose-pepstatin conjugates, and neomannosylated BSA-pepstatin conjugates, as tools for the in vivo study of the antigen processing pathway. Conjugation to mannose and to neomannosylated BSA substantially improved the solubility of the conjugates relative to pepstatin. The mannose-pepstatin conjugates showed no reduction in inhibition of cathepsin E, whereas the neomannosylated BSA-pepstatin conjugates showed some loss of inhibition, probably due to steric factors. However, a neomannosylated BSA-pepstatin conjugate incorporating a cleavable disulfide linkage between the pepstatin and the BSA showed the best uptake to dendritic cells and the best inhibition of antigen processing. 相似文献
20.
E. Yu. Osipova A. N. Rodionov Yu. A. Belousov M. M. Il’in A. L. Nikolaev A. V. Gopin S. E. Mazina A. A. Simenel 《Russian Journal of Organic Chemistry》2016,52(1):127-130
The condensation of 1-(ferrocenylalkyl)pyrazole-3-carbaldehydes with 4′-aminotetraphenylporphyrin, followed by reduction with NaBH(OAc)3 in 1,2-dichloroethane, provides a convenient method for the synthesis of 5-{4-[({1-[1-(ferrocen-1-yl)alkyl]-5-methyl-1H-pyrazol-3-yl}methyl)amino]phenyl}-10,15,20-triphenylporphyrins which exhibit pronounced cytotoxicity against Staphylococcus aureus under ultrasonic irradiation. 相似文献