首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过V2O5的碳热还原反应制备了具有优异倍率性能和循环稳定性的V2O3-C双层包覆的磷酸铁锂正极材料. 粉末X射线衍射、元素分析、高分辨投射电镜和拉曼光谱研究表明V2O3相与碳层共包覆于磷酸铁锂颗粒表面. 在V2O5的碳热还原反应后,碳含量明显降低,但石墨化程度未发生明显改变. 电化学测试结果表明少量V2O3显著改善了磷酸铁锂正极材料的倍率性能和高温循环性能,包含1%氧化钒的复合正极材料在0.2 C放电容量为167 mAh/g,5 C时放电容量为129 mAh/g,并且循环稳定性优异;在55 oC和1 C时放电容量为151 mAh/g,循环100次后无明显容量衰减.  相似文献   

2.
The lithium insertion characteristics of lithium vanadate, Li4V3O8, were investigated using LiV3O8 prepared by the precipitation technique as the starting material. The Li4V3O8 phase was formed by lithiation over x=1.5 in Li1+xV3O8, and the diffusion of lithium in this phase determined the reaction rate of insertion more than x=1.5. Improvement of insertion kinetics in the Li4V3O8 phase extended the lithium insertion limit from x=3.2 to x=4.0, compared with the case of LiV3O8 by conventional high temperature synthesis. Lithium insertion proceeds as the single-phase reaction in the range of 3.2<x<4.0.  相似文献   

3.
Vanadium pentoxide thin films, usable as positive electrode in microbatteries, have been prepared by radio frequency magnetron sputtering in a pure argon or mixed argon/oxygen plasma. Depending on the oxygen pressure in the discharge gas, we have obtained either crystallized or amorphous thin films. These two kinds of thin films having different electrochemical behavior, an extensive X-ray photoelectron spectroscopy (XPS) study (especially suited for thin films analysis) was carried out. The main redox processes occurring during the first discharge–charge cycle were identified. In addition, depending on the crystalline or amorphous character of the samples, we have noticed some differences concerning the kinetic of reduction. Furthermore, the growth of a surface layer between the cathode and the liquid electrolyte was evidenced upon the discharge as well as its partial dissolution upon the charge.  相似文献   

4.
Thermal treatment in UHV of clean V2O5 single crystals results in homogeneous oxygen loss, involving a rate-limiting surface reaction. Depending upon the pretreatment, aircleaved samples transform topotactically into V6O13, or into what we call a phase Q of probable composition V4O9 or V6O13.5. Low energy electron bombardment of clean UHV-cleaved V2O5(010) surfaces produces the transition V2O5 → V6O13 at room temperature. This effect is attributed to electron beam stimulated reactions. The influence on the transition of carbon-containing impurities is discussed. The nucleation of V6O13 on V2O5 is explained by a model based on a surface reaction, the rate of which is enhanced by the interaction with contaminating molecules and low energy electron bombardment. The presence of shear planes at the boundary between V2O5 and the V6O13 nuclei locally enhances the oxygen loss rate and allows the V6O13 nuclei to grow into the bulk.The enhanced mobility of the oxygen at these boundaries is thought to influence favorably the oxidation-regeneration rate of the V2O5-catalyst.  相似文献   

5.
Lithium insertion to distorted ReO3-type metastable solid solution NbxW1−xO3−x/2 (0≤x<0.25) has been studied by chemical and electrochemical methods. In the course of lithium insertion into tetragonal compounds, transition to a cubic phase was found to occur in the region where values of y (in LiyNbxW1−xO3−x/2) fall between 0.2 and 0.3, and the phase transition was found to depend on the conditions of the reaction. Changes in OCV and lattice parameters in tetragonal region (y<0.2) were discussed from the viewpoint of the ordering of lithium ions. Also, the component diffusion coefficient of lithium in tetragonal compounds Li0.1NbxW1−xO3−x/2 (0≤x≤0.23) was found to increase with niobium content when x≤0.10, and to saturate at 4×10−9 cm2/s.  相似文献   

6.
Lithium and sodium insertion into RMo2O8 (R = Zr,Hf) has been studied by galvanostatic chronopotentiometry, cyclic voltammetry (CV) and quantitative XRD phase analysis as well as by flame photometry after treatment with n-butyllithium or sodium naphtalide solutions. Low-temperature modification of ZrMo2O8 with monoclinic framework structure accommodates two lithiums, in agreement with the topological analysis based on the Voronoi tessellation, at a constant open-circuit voltage of 2.4 V and discharge voltage of ca. 2.1 V. According to CV, the process is partially reversible, but lithium extraction is kinetically hindered, presumably due to the low electronic conductivity of the oxidized phase. Further lithium insertion results in complete amorphization at 4Li per formula unit. This value is limiting also for the isostructural trigonal layered phases, HfMo2O8 and high-temperature ZrMo2O8; in those cases, however, amorphization starts from the beginning of reduction. Sodium insertion (both electrochemical and chemical) in the three phases is sterically hindered and could only be detected by CV.  相似文献   

7.
We present periodic DFT calculations to study the structure of the V2O5-TiO2 (anatase) catalyst. Linear and cyclic dimeric V2O5 species represent the active phase. The support TiO2 (anatase) is represented for the perfect (1 0 0) and (0 0 1) surfaces. The maximum interaction between the active phase and the support is favored, and low coverage is assumed. The most stable models allow the compensation of the surface dangling bonds, and can be understood as a continuation of the bulk anatase structure. The more suitable models for studying reactivity possess uncoordinated atoms available for reactivity, such as terminal oxygen atoms in V2O5. Relaxation plays an important role in the adsorption systems, and cannot be discarded when modeling the V2O5-anatase catalyst.  相似文献   

8.
The growth, and reactivity of monolayer V2O5 films supported on TiO2(1 1 0) produced via the oxidation of vapor-deposited vanadium were studied using X-ray photoelectron spectroscopy and temperature programmed desorption (TPD). Oxidation of vapor-deposited vanadium in 10−7 Torr of O2 at 600 K produced vanadia films that contained primarily V3+, while oxidation in 10−3 Torr at 400 K produced films that contained primarily V5+. The reactivity of the supported vanadia layers for the oxidation of methanol to formaldehyde was studied using TPD. The activity for this reaction was found to be a function of the oxidation state of the vanadium cations in the film.  相似文献   

9.
Li1 + x(Ni0.5Mn0.5)1  xO2 cathode material for Li-ion batteries has been prepared by a molten salt method using Li2CO3 salt. The influences of synthetic temperature and time have been intensively investigated. It is easy to obtain materials with a hexagonal α-NaFeO2 structure except broad peaks between 20° and 25°. Nickel in Li1 + x(Ni0.5Mn0.5)1  xO2 is oxidized to a trivalent state while manganese maintained a tetravalent state. It is found that the discharge capacities of all samples increase with cycling. The sample prepared at 850 °C for 5 h has a discharge capacity of 130 mAh g− 1 between 2.5 and 4.5 V versus VLi+/Li at a specific current of 0.13 mA cm− 2 after 50 cycles at 25 °C.  相似文献   

10.
V2O5-TiO2 layers with a sheet-like morphology were synthesized by micro arc oxidation process for the first time. Surface morphology and topography of the layers were investigated by scanning electron microscope (SEM) and atomic force microscope (AFM). Phase structure and chemical composition of the layers were also studied by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques. It was revealed that the composite layers had a sheet-like structure average thickness of which was about 100 nm depending on the applied voltage. The layers consisted of anatase, rutile, and vanadium pentoxide phases fractions of which varied with the applied voltage. The optical properties of the layers were also examined employing a UV-vis spectrophotometer. It was found that the absorption edge of the grown composite layers shifted toward the visible wavelengths when compared to MAO-synthesized pure titania layers. The band gap energy of the composite layers was calculated as 2.58 eV. Furthermore, photo-catalytic performance of the layers was examined by measuring the decomposition rate of methylene blue under ultraviolet and visible irradiations. The results demonstrated that about 90% and 68% of methylene blue solution was decomposed after 120 min ultraviolet and visible irradiations over the composite layers, respectively.  相似文献   

11.
Constant force images of the V2O5(001) surface were recorded in ambient conditions with atomic force microscopy. All images exhibit the 11.5 Å × 3.5 Å. periodicity expected for a bulk terminated surface. However, images reveal differences from the ideal structure. The experimental results are interpreted in terms of preferential adsorption sites for water molecules. Because these sites are thought to influence the catalytic properties of the surface, their characterization is an important step towards understanding how the atomic-scale structure of a surface influences its properties.  相似文献   

12.
V2O5 thin films were prepared under various conditions by using reactive RF sputtering technique. The microstructure and electrical properties of the films are have been investigated. X-ray diffraction data revealed the films deposited at low O2/Ar ratio are amorphous. The orthorhombic structure of film improved after post annealing at 873 K. The microstructure parameters (crystallite/domain size and macrostrain) have been evaluated by using a single order Voigt profile method. Using the two-point probe technique, the dark conductivity as a function of the condition parameters such as film thickness, oxygen content and temperature are discussed. It was also found that, the behaviour of ρd versus d was found to fit properly with the Fuchs-Sondheimer relation with the parameters: ρo = 2.14 × 107 Ω cm and ?o = 112 ± 2 nm. At high temperature, the electrical conductivity is dominated by grain boundaries, the values of activation energy and potential barrier height were 0.90 ± 0.02 eV and 0.92 ± 0.02 V, respectively.  相似文献   

13.
Li1+xV3O8 (LT-M sample) was obtained by the sol-gel method in CH3OH. This sample, prepared at 350°C, possessed a smaller grain size and better electrochemical performance than the HT sample prepared by conventional high temperature synthesis. High discharge capacity (372 mAh g−1: x=4.0) and reversible discharge and charge cycles were attained owing to improvement of insertion and extraction kinetics. When heated at 200°C, CH3OH molecules remained in the compound and crystallinity became lower by lithium insertion over x=2.0. The lithium deintercalation was irreversible.  相似文献   

14.
本文采用化学湿磨法,首次将金属氧化物Mn3O4包覆于LiNi0.5Mn1.5O4颗粒表面,使得电极材料的电子电导率从1.53×10-7 S/cm 提高到3.15×10-5 S/cm. 电化学测试结果表明Mn3O4包覆大大提高LiNi0.5Mn1.5O4正极材料的倍率性能和高温循环稳定性. 最佳包覆样品为2.6wt% Mn3O4包覆的LiNi0.5Mn1.5O4,在10 C倍率下具有108 mAh/g的高放电容并且在55 °C下100次循环后仍有78%的容量保持率,远大于未包覆样品67%的容量保持率.  相似文献   

15.
Resonant X-ray scattering experiments have been performed in 2.8% Cr-doped V2O3 single crystal at the Vanadium K-photoabsorption edge. Using linear polarization analysis and comparing the angular dependence of scattered photons with structure factor calculations we can discriminate the nature of the different resonant X-ray processes involved in forbidden lattice reflections enhanced by resonances. We present an experimental method to extract information on local properties of edge-atom such as the anisotropy of the local atomic environment, the atomic magnetic moment orientation and orbital ordering.  相似文献   

16.
Cr0.1V2O5.15 was prepared by an oxalic acid assisted sol–gel method. X-ray diffraction showed that Cr doping induced a slight expansion (ΔV/V ≈ 2.3%) in the crystal lattice of V2O5. The electrochemical properties of Cr0.1V2O5.15 in the potential range of 3.8–2.0 V were studied by cyclic voltammetry, galvanostatic charge–discharge cycling and potentiostatic intermittent titration technique. Cyclic voltammetry showed that the irreversible phase transition of V2O5 during the first cycle was effectively prevented by Cr doping. This caused the good charge–discharge cycling performance of the doped material. The discharge capacities were recorded to be 200, 170 and 120 mAhg− 1 after fifty cycles at the C/10, C/2 and 1C rates, respectively. However, ex-situ X-ray diffraction showed that the crystal structure of the material was destroyed after long-term cycling. The lithium diffusion coefficient of Cr0.1V2O5.15 varied between 10− 11 and 10− 12 cm2 s− 1, which was larger than that of crystalline V2O5, and was close to those of metal doped V2O5 in previous reports. The improvement in lithium diffusion kinetics was regarded as an important reason for the good electrochemical performance of Cr0.1V2O5.15.  相似文献   

17.
Vanadium oxide thin films were prepared by sol-gel method, then subjected to Nd:YAG laser (CW, 1064 nm) radiation. The characteristics of the films were changed by varying the intensity of the laser radiation. The nanocrystalline films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). XRD revealed that above 102 W/cm2 the original xerogel structure disappears and above 129 W/cm2 the films become totally polycrystalline with an orthorhombic structure. From TEM observations, we can see that due to laser radiation, the originally fibrillar-like particles disappear and irregular shaped, layer structured V2O5 particles are created. From XPS spectra we can conclude that due to laser radiation the O/V ratio increased with higher intensities.  相似文献   

18.
Scanned-energy mode photoelectron diffraction (PhD), using the O 1s and V 2p photoemission signals, together with multiple-scattering simulations, have been used to investigate the structure of the V2O3(0 0 0 1) surface. The results support a strongly-relaxed half-metal termination of the bulk, similar to that found in earlier studies of Al2O3(0 0 0 1) and Cr2O3(0 0 0 1) surfaces based on low energy electron and surface X-ray diffraction methods. However, the PhD investigation fails to provide definitive evidence for the presence or absence of surface vanadyl (VO) species associated with atop O atoms on the surface layer of V atoms. Specifically, the best-fit structure does not include these vanadyl species, although an alternative model with similar relaxations but including vanadyl O atoms yields a reliability-factor within the variance of that of the best-fit structure.  相似文献   

19.
The phosphor, BaMgAl10O17:Eu2+, showing a blue emission band at about 450 nm was prepared by a normal solid-state reaction using BaCO3, Al2O3, MgO and Eu2O3 as starting materials with AlF3 as a flux. The study of combined Rietveld refinement and photoluminescence spectra was carried out to determine the structural parameters, such as lattice constants, the valence state of Eu, the site preference of Mg and site fractions of Mg and Eu. The occupancies of Eu and Mg were 0.022 and 0.526, respectively. The valence state of Eu was the divalent state because there was only one broad line at about 450 nm in the photoluminescence spectrum. The site preference of Mg atoms was the tetrahedral site of Al atoms surrounded by oxygen atoms in the spinel block. Lattice parameters decreased due to the difference of two ionic radii, Eu2+(1.09 Å) and Ba2+(1.34 Å), compared with those of BaMgAl10O17.  相似文献   

20.
Apatite silicates have recently been reported as promising electrolyte materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). In this work, a series of apatite-type compounds La9.67Si6-xAlxO26.5-x/2 (LSAO) with x = 0-2 are synthesized by the sol-gel process at calcining temperature of 800-900 °C. Thermal expansion coefficient, relative density and electrical conductivity of these samples with different Al doped contents are investigated. A symmetrical cell, which is composed of La9.67Si5AlO26 electrolyte and (La0.74Bi0.10Sr0.16)MnO3+δ (LBSM) cathode, is fabricated and electrochemically characterized. LBSM cathode shows a good electrochemical performance, which proves LBSM to be a promising candidate cathode for LSAO-based electrolyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号