首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High speed switching of current in gradient coils within high magnetic field strength magnetic resonance imaging (MRI) scanners results in high acoustic sound pressure levels (SPL) in and around these machines. Many studies have already been conducted to characterize the sound field in and around MRIs and various methods have been investigated to attenuate the noise generated. In the work presented here a computational vibro-acoustic model was developed based on an iteratively modified and validated finite element (FE) model to characterize the acoustic noise properties of the gradient coil. The simulation results from the computational model were verified through experimental noise measurement for the gradient coil insert in a 4 T MRI scanner by using swept sinusoidal time waveform inputs. Comparisons show that the computational model predicts the noise characteristic properties extremely accurately. There are three dominant frequency bands where the SPL is much higher than those at other frequencies. The SPL in the horizontal direction is much higher than that in the vertical direction due to the excitation to the horizontally placed X coil. The SPL to the inner surface of the coil is higher than far from the inner surface, which proves that the acoustic noise is radiated from the inner surface and primarily caused by the normal vibration of the inner surface. Further verification was conducted by using two types of trapezoidal sequence inputs usually used, which is to simulate real scanning sequences for small animals. Again the accuracy of the developed model is verified. The validated acoustic computational model could be used as an effective method to predict the noise that would be produced by a coil in the design stage. Modification of the structural design or the excitation pulse could be performed to reduce the acoustic noise when the gradient coil is in scanning.  相似文献   

2.
Eddy currents are inevitably induced when time-varying magnetic field gradients interact with the metallic structures of a magnetic resonance imaging (MRI) scanner. The secondary magnetic field produced by this induced current degrades the spatial and temporal performance of the primary field generated by the gradient coils. Although this undesired effect can be minimized by using actively and/or passively shielded gradient coils and current pre-emphasis techniques, a residual eddy current still remains in the MRI scanner structure. Accurate simulation of these eddy currents is important in the successful design of gradient coils and magnet cryostat vessels. Efficient methods for simulating eddy currents are currently restricted to cylindrical-symmetry. The approach presented in this paper divides thick conducting cylinders into thin layers (thinner than the skin depth) and expresses the current density on each as a Fourier series. The coupling between each mode of the Fourier series with every other is modeled with an inductive network method. In this way, the eddy currents induced in realistic cryostat surfaces by coils of arbitrary geometry can be simulated. The new method was validated by simulating a canonical problem and comparing the results against a commercially available software package. An accurate skin depth of 2.76 mm was calculated in 6 min with the new method. The currents induced by an actively shielded x-gradient coil were simulated assuming a finite length cylindrical cryostat consisting of three different conducting materials. Details of the temporal-spatial induced current diffusion process were simulated through all cryostat layers, which could not be efficiently simulated with any other method. With this data, all quantities that depend on the current density, such as the secondary magnetic field, are simply evaluated.  相似文献   

3.
Compensation of gradient-induced magnetic field perturbations   总被引:3,自引:0,他引:3  
Pulsed magnetic field gradients are essential for MR imaging and localized spectroscopy applications. However, besides the desired linear field gradients, pulsed currents in a strong external magnetic field also generate unwanted effects like eddy currents, gradient coil vibrations and acoustic noise. While the temporal magnetic field perturbations associated with eddy currents lead to spectral line shape distortions and signal loss, the vibration-related modulations lead to anti-symmetrical sidebands of any large signal (i.e. water), thereby obliterating the signals from low-concentration metabolites. Here the measurement, characterization and compensation of vibration-related magnetic field perturbations is presented. Following a quantitative evaluation of the various temporal components of the main magnetic field, a digital B0 magnetic field waveform is generated which reduces all temporal variations of the main magnetic field to within the spectral noise level.  相似文献   

4.
High speed switching of current in gradient coils within high magnetic field strength Magnetic Resonance Imaging (MRI) scanners may result in high acoustic sound pressure levels in and around these machines. Many studies have already been conducted to characterize the sound field in and around MRIs and various methods have been investigated to attenuate the noise generated. To characterize the vibration properties of the gradient coil, a modified Finite Element (FE) model was developed according to the dimensional design of an available gradient coil insert and the concentration of the copper windings in the coil. The finite element analysis results were verified through experimental modal testing of the same gradient coil in a free-free state (no boundary constraints). Comparisons show that the FE model predicts the vibration properties extremely accurately. Based on the verified FE model, boundary conditions (supports) were added to the model to simulate the operating condition when the gradient coil insert is in place in an MRI machine. Vibration analysis results from the FE model were again verified through experimental vibration testing with the gradient coil insert installed in a 4 T MRI and excited using swept sinusoidal time waveforms. Through a comparison of the vibration signals generated it was found that the vibration resonances, both from the FE model and the experimental vibration testing, shift to higher frequencies after the boundary constraints were applied, as was expected. The predicted vibration response was very close to that measured from the gradient coil insert in operation. The FE modeling procedure that has been developed could easily be used to accurately predict the vibration properties of other gradient coil designs. Furthermore, the vibration analysis results from the FE model could be used in acoustic noise analysis to predict the sound pressure level produced by different types of input current pulse sequences.  相似文献   

5.
A new transverse gradient coil assembly of restricted length is presented. The coil is symmetric, has the advantage of simplicity, generates a remarkably large volume of uniform transverse gradient field, features very low inductance, and can therefore be suitable for applications requiring fast switched gradients. A prototype coil has been constructed to check computer simulations and to compare measured parameters of the system with those expected. Coils of this type may be used for MRI of the human head, and of animals, and for NMR microimaging.  相似文献   

6.
胡格丽  倪志鹏  王秋良 《物理学报》2014,63(1):18301-018301
在磁共振成像系统的工作过程中,噪声主要是由梯度线圈系统产生的.梯度线圈置于高均匀度超导磁体的室温孔内,并工作于脉冲状态,频繁的开启和关闭会使线圈中电流急剧随时间变化,变化的电流导致线圈受到变化的洛伦兹力作用,从而产生振动,这种高频振动所发出的噪声会对病人产生刺激,严重时甚至会对病人的听觉神经产生损伤.梯度场的场强越强、切换速度越快,所产生的噪声就越大.降低噪声的最根本方法是通过有效的梯度线圈设计,降低洛伦兹力的空间分布.本文针对纵向梯度线圈,在原经典目标场设计方法基础上,加入对振动参量,从而能够有效地降低线圈工作时所产生的噪声.其具体方法是将振动控制函数作为约束条件,通过目标场法建立数学模型,利用MATLAB进行电磁验算.计算结果表明,所提数学模型可有效地降低线圈振动的最大振幅.  相似文献   

7.
Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 microPa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager's permanent magnet and the room air-handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions.  相似文献   

8.
The generation of acoustic and vortex oscillations in high-temperature superconductor (HTSC) powders excited by radiofrequency (rf) pulses was analyzed in detail in our earlier publications. The rf magnetic field stimulates oscillations of magnetic vortices on the surface of an HTSC grain, which are transformed into lattice vibrations via the pinning centers at the surface, thus inducing a propagating acoustic wave. The allowance for second-order nonlinearity in the gradient of deviation of the crystal lattice from its equilibrium position in the equation for the acoustic wave leads to a dependence of the natural frequency of crystal lattice vibrations on the amplitude and duration of pulses exciting these vibrations. Such a dependence is responsible for echo signals that can be detected experimentally. The proposed model makes it possible to interpret most experimental results for BiPbSrCaCuO superconducting samples. We consider the effect of a constant magnetic field on the amplitude and the echo signal decay time. We observed a clearly manifested peak that was not described by other authors. The model proposed here provides an obvious explanation for this peak.  相似文献   

9.
A new sensor principle for detection of patient movement in magnetic resonance imaging has been successfully applied for the reduction of motion artifacts. It uses a device that is already present in every MRI system, namely the rf coil. Patient movement within the coil causes changes in the rf impedance match of the coil, which can be measured as variations in the reflected rf power. The principle used for the detection of respiratory and cardiac motion is described, and experimental results measured with several coil arrangements are given. Images are presented which were acquired with respiratory gating derived from the rf body coil of a 2 Tesla whole body MRI system.  相似文献   

10.
Detection of NMR signals with a radio-frequency atomic magnetometer   总被引:1,自引:0,他引:1  
We demonstrate detection of proton NMR signals with a radio-frequency (rf) atomic magnetometer tuned to the NMR frequency of 62 kHz. High-frequency operation of the atomic magnetometer makes it relatively insensitive to ambient magnetic field noise. We obtain magnetic field sensitivity of 7 fT/Hz1/2 using only a thin aluminum shield. We also derive an expression for the fundamental sensitivity limit of a surface inductive pick-up coil as a function of frequency and find that an atomic rf magnetometer is intrinsically more sensitive than a coil of comparable size for frequencies below about 50 MHz.  相似文献   

11.
This paper evaluates a new, low-frequency finite-difference time-domain method applied to the problem of induced E-fields/eddy currents in the human body resulting from the pulsed magnetic field gradients in MRI. In this algorithm, a distributed equivalent magnetic current is proposed as the electromagnetic source and is obtained by quasistatic calculation of the empty coil's vector potential or measurements therein. This technique circumvents the discretization of complicated gradient coil geometries into a mesh of Yee cells, and thereby enables any type of gradient coil modelling or other complex low frequency sources. The proposed method has been verified against an example with an analytical solution. Results are presented showing the spatial distribution of gradient-induced electric fields in a multi-layered spherical phantom model and a complete body model.  相似文献   

12.
Acoustic noise produced during single point imaging (SPI) experiments was modulated by changes in the spatial encoding gradients. Parameters of both linear and sine-shaped gradient ramps were modified to minimize the acoustic noise levels. Acoustic noise measurements during SPI were measured on three different gradient systems and revealed that for small gradient-bore systems a considerable acoustic noise reduction of more than 20 dB can easily be achieved. SPI in conjunction with an optimized gradient waveform can be a superb alternative to the previously introduced single point ramped imaging with T(1) enhancement (SPRITE) method when sound levels and overheating of gradients are a concern.  相似文献   

13.
A study is made of certain dominant frequencies in the acoustic noise spectrum of the magnetic resonance imaging system. Motivated by both spring and string ideas, we investigate whether the contributions to the sound from certain frequencies can be canceled by the appropriate gradient pulse sequence design. From both simulations and experiments, vibrations resulting from an impulsive force associated with a ramping up of a gradient pulse are shown to be cancelled immediately upon the application of another impulsive force coming from the subsequent appropriately timed ramping down of that pulse. A general approach to suppression of multiple-frequency contributions involving a series of gradient pulses with variable timings is given for the cancellations between pairs of impulsive forces. Various examples are confirmed through string simulations, MRI experiments, and linear response theory. This also provides a foundation to explain some results in previous papers on this subject. The method suggests that a variety of pulse profiles and timing combinations can be used to attenuate important contributions to the acoustic spectrum.  相似文献   

14.
The purpose of this work is to study computationally the possibility of the application of a hybrid active noise control technique for magnetic resonance imaging (MRI) acoustic noise reduction. A hybrid control system combined with both feedforward and feedback loops embedded is proposed for potential application on active MRI noise reduction. A set of computational simulation studies were performed. Sets of MRI acoustic noise emissions measured at the patient's left ear location were recorded and used in the simulation study. By comparing three different control systems, namely, the feedback, the feedforward and the hybrid control, our results revealed that the hybrid control system is the most effective. The hybrid control system achieved approximately a 20-dB reduction at the principal frequency component. We concluded that the proposed hybrid active control scheme could have a potential application for MRI scanner noise reduction.  相似文献   

15.
对磁共振成像(MRI)的安全性进行了综述,主要涉及五个方面:静磁场、梯度场、射频场、噪声和造影剂.在没有铁磁性外源性物质的条件下,静磁场对人体没有明显的损害,有较高的安全系数.随时间变化的梯度场(dB/dt)可在受试者体内诱导出电场而兴奋神经或肌肉.当梯度上升时间只有数毫秒时,外周神经兴奋是梯度场安全的上限指标.在MRI测定过程中,射频场发射的功率在患者组织内转化成热能,使组织温度升高.MRI运行过程中可产生各种噪声,可能使某些患者的听力受到损伤,使用耳塞仍是削弱噪声最简单和最经济的方法.目前使用的造影剂主要为含钆的化合物,副作用发生率在2%~4%.  相似文献   

16.
Measuring eye movements (EMs) using the search-coil eye-tracking technique is superior to video-based infrared methods [Collewijn H, van der Mark F, Jansen TC. Precise recording of human eye movements. Vision Res 1975;15(3):447-50], which suffer from the instability of pupil size, blinking behavior and lower temporal resolution. However, no conventional functional magnetic resonance imaging (fMRI)-compatible search-coil eye tracker exists. The main problems for such a technique are the interaction between the transmitter coils and the magnetic gradients used for imaging as well as the limited amount of space in a scanner. Here we present an approach to overcome these problems and we demonstrate a method to record EMs in an MRI scanner using a search coil. The system described has a spatial resolution of 0.07 degrees (visual angle) and a high temporal resolution (22 kHz). The transmitter coils are integrated into the visual presentation system and the control/analysis unit is portable, which enables us to integrate the eye tracker with an MRI scanner. Our tests demonstrate low noise in the recorded eye traces and scanning with minimal artifact. Furthermore, the induced current in the search coil caused by the RF pulses does not lead to measurable heating. Altogether, this MR-compatible search-coil eye tracker can be used to precisely monitor EMs with high spatial and temporal resolution during fMRI. It can therefore be of great importance for studies requiring accurate fixation of a target, or measurement and study of the subject's oculomotor system.  相似文献   

17.
18.
有源噪声控制在隔声罩中应用的初步实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
牛锋  李宁荣  邱小军 《应用声学》2005,24(5):281-285
本文以对液压泵降噪为例,对有源噪声控制系统在隔声罩中的应用进行了初步的实验研究。噪声的低频段由有源噪声控制系统降低,中高频段由隔声罩降低,从而发挥了有源噪声控制和隔声罩各自的优点。附加了有源系统后的隔声罩使液压泵的噪声从112.4dB降到了80.0dB,整个系统的降噪量达到了32dB。其中有源噪声控制系统采用了6个次级控制源,在600Hz以下频段新增13dB的插入损失。  相似文献   

19.
The Earth's magnetic field, though weak, is appealing for NMR applications because it is highly homogeneous, globally available and free. However, the practicality of Earth's field NMR (EFNMR) has long been limited by the need to perform experiments in outdoor locations where the local field homogeneity is not disrupted by ferrous or magnetic objects and where ultra-low frequency (ULF) noise sources are at a minimum. Herein we present a flexible and practical implementation of MRI in the Earth's magnetic field that demonstrates that EFNMR is not as difficult as it was previously thought to be. In this implementation, pre-polarization and ULF noise shielding, achieved using a crude electromagnet, are used to significantly improve signal-to-noise ratio (SNR) even in relatively noisy environments. A three axis gradient coil set, in addition to providing imaging gradients, is used to provide first-order shims such that sub-hertz linewidths can routinely be achieved, even in locations of significant local field inhomogeneity such as indoor scientific laboratories. Temporal fluctuations in the magnitude of the Earth's magnetic field are measured and a regime found within which these variations in Larmor frequency produce no observable artefacts in reconstructed images.  相似文献   

20.
This letter describes a data acquisition setup for recording, and processing, running speech from a person in a magnetic resonance imaging (MRI) scanner. The main focus is on ensuring synchronicity between image and audio acquisition, and in obtaining good signal to noise ratio to facilitate further speech analysis and modeling. A field-programmable gate array based hardware design for synchronizing the scanner image acquisition to other external data such as audio is described. The audio setup itself features two fiber optical microphones and a noise-canceling filter. Two noise cancellation methods are described including a novel approach using a pulse sequence specific model of the gradient noise of the MRI scanner. The setup is useful for scientific speech production studies. Sample results of speech and singing data acquired and processed using the proposed method are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号