首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
The corrosion behavior of boride layers at the AISI 304 steel surface is evaluated in the present study. Electrochemical impedance spectroscopy (EIS) technique was used for the evaluation of the polarization resistance at the steel surface, with the aid of AUTOLAB potentiostat. Samples were treated with boron paste thickness of 4 and 5 mm, in the range of temperatures 1123 ≤ T ≤ 1273 K and exposed time of 4 and 6 h. The electrochemical technique employed 10 mV AC with a frequency scan range from 8 kHz to 3 mHz in deaerated 0.1 M NaCl solution. Nyquist diagrams show that the highest values of corrosion resistance are present in the samples borided at the temperature of 1273 K, with treatment time of 4 h and 4 mm of boron paste thickness. The values of corrosion resistance on borided steels are compared with the porosity exhibited in the layers.  相似文献   

2.
A dynamic multiscale simulation based on quasicontinuum method (QC) has been conducted to study the effect of tool geometry in nanometric cutting process of single crystal copper. In the simulation, the many-body EAM potential is used for the interactions between copper atoms in of the workpiece. The simulation captures the atomistic behaviors of material removal mechanisms from the free surface and the mobility of dislocations and their interactions with the computational cost of local atomistic simulation method. Simulations are performed on single crystal copper to study the atomistic details of material removal, chip formation, sub-surface deformation, and machining mechanism. The simulation results demonstrate that tool edge radius has significant effect on chip formation and subsurface deformation, because the effective rake angle varies with the tool edge radius. In addition, different effective rake angles result in different stress states and smoother surface can be obtained under bigger clearance angle. The variations of tangential force, normal force as well as the ratio of normal force to tangential force are obtained to analyze the effects of tool edge radius, rake angle and clearance angle in quantitative way.  相似文献   

3.
For the implementation of thin ceramic hard coatings into intensive application environments, the fracture toughness is a particularly important material design parameter. Characterisation of the fracture toughness of small-scale specimens has been a topic of great debate, due to size effects, plasticity, residual stress effects and the influence of ion penetration from the sample fabrication process. In this work, several different small-scale fracture toughness geometries (single-beam cantilever, double-beam cantilever and micro-pillar splitting) were compared, fabricated from a thin physical vapour-deposited ceramic film using a focused ion beam source, and then the effect of the gallium-milled notch on mode I toughness quantification investigated. It was found that notching using a focused gallium source influences small-scale toughness measurements and can lead to an overestimation of the fracture toughness values for chromium nitride (CrN) thin films. The effects of gallium ion irradiation were further studied by performing the first small-scale high-temperature toughness measurements within the scanning electron microscope, with the consequence that annealing at high temperatures allows for diffusion of the gallium to grain boundaries promoting embrittlement in small-scale CrN samples. This work highlights the sensitivity of some materials to gallium ion penetration effects, and the profound effect that it can have on fracture toughness evaluation.  相似文献   

4.
The models for single-fiber push out test are developed to evaluate the fracture toughness GIIc of the fiber/matrix interface in titanium alloys reinforced by SiC monofilaments. The models are based on fracture mechanics, taking into consideration of the free-end surface and Poisson expansion. Theoretical solutions to GIIc are obtained, and the effects of several key factors such as the initial crack length, crack length, friction coefficient, and interfacial frictional shear stress are discussed. The predictions by the models are compared with the previous finite element analysis results for the interfacial toughness of the composites including Sigma1240/Ti-6-4, SCS/Ti-6-4, SCS/Timetal 834, and SCS/Timetal 21s. The results show that the models can reliably predict the interfacial toughness of the titanium matrix composites, in which interfacial debonding usually occurs at the bottom of the samples.  相似文献   

5.
Jeong H  Nahm SH  Jhang KY  Nam YH 《Ultrasonics》2003,41(7):543-549
The objective of this paper is to develop a nondestructive method for estimating the fracture toughness (K(IC)) of CrMoV steels used as the rotor material of steam turbines in power plants. To achieve this objective, a number of CrMoV steel samples were heat-treated, and the fracture appearance transition temperature (FATT) was determined as a function of aging time. Nonlinear ultrasonics was employed as the theoretical basis to explain the harmonic generation in a damaged material, and the nonlinearity parameter of the second harmonic wave was the experimental measure used to be correlated to the fracture toughness of the rotor steel. The nondestructive procedure for estimating the K(IC) consists of two steps. First, the correlations between the nonlinearity parameter and the FATT are sought. The FATT values are then used to estimate K(IC) using the K(IC) versus excess temperature (i.e., T-FATT) correlation that is available in the literature for CrMoV rotor steel.  相似文献   

6.
In this study, we examined the tensile and fracture behaviors of multi-walled carbon nanotube (MWCNT) reinforced epoxy nanocomposites with and without moisture absorption. The MWCNT/epoxy nanocomposites were fabricated using 0.1 wt.% unmodified, oxidized, and silanized MWCNTs and were kept in seawater for over 15 weeks. Silane-modified specimens demonstrated greater tensile strength, elastic modulus, and transmittance than unmodified or acid-modified specimens, irrespective of moisture absorption. Compared to dry nanocomposites, moisture absorption decreased the tensile strength and elastic modulus for each surface modification. Fracture behavior showed similar tendencies as tensile test results. However, the fracture toughnesses of oxidized and silanized MWCNT/epoxy nanocomposites were not notably different, whereas unmodified specimens had much lower fracture toughnesses, irrespective of moisture absorption. Moisture absorption may have caused degradation resulting in weak interfacial bonding due to epoxy swelling.  相似文献   

7.
In this research, solvent based polyamide – imide (PAI)/clay nanocomposites were prepared successfully using the solution dispersion technique. With the assistance of the ultrasonic wave, the effect of the ultrasonic wave time on the microstructure of 3 wt% PAI/C20A nanocomposite (NC) was investigated. Then, the best ultrasonic parameters were selected and the effects of the concentration of Cloisite 20A (C20A) (1, 3 and 5 wt% C20A) on the microstructure and mechanical properties (adhesion, hardness, flexibility, wear and impact) of NCs were investigated. The PAI, C20A and nanocomposites (NC)s were characterized by Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDX), and Wide-angle X-ray diffraction (WAXD). The results showed that the sample with 1 and 3 wt% C20A had better mechanical properties, as compared to the pure PAI and the 5 wt% NC.  相似文献   

8.
Laser cladding of the Al + TiC alloy powder on Ti-6Al-4V alloy can form the Ti3Al/TiAl + TiC ceramic layer. In this study, TiC particle-dispersed Ti3Al/TiAl matrix ceramic layer on the Ti-6Al-4V alloy by laser cladding has been researched by means of X-ray diffraction, scanning electron microscope, electron probe micro-analyzer, energy dispersive spectrometer. The main difference from the earlier reports is that Ti3Al/TiAl has been chosen as the matrix of the composite coating. The wear resistance of the Al + 30 wt.% TiC and the Al + 40 wt.% TiC cladding layer was approximately 2 times greater than that of the Ti-6Al-4V substrate due to the reinforcement of the Ti3Al/TiAl + TiC hard phases. However, when the TiC mass percent was above 40 wt.%, the thermal stress value was greater than the materials yield strength limit in the ceramic layer, the microcrack was present and its wear resistance decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号