首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterisation of the plasma plume induced by femtosecond laser-metal interactions has been carried out using a Langmuir probe. A double peak distribution of ablated ions and electrons has been recorded during time of flight (TOF) experiments for three metals studied (Ag, Cu and Ni). The first peak which occurs earliest in time is attributed to a surface layer of contaminants on the metal surface as it is shown to disappear after several laser shots. The re-growth of this peak, thought to be due to a recontamination process on the surface of the metal, is the subject of this paper. Two re-contamination mechanisms were considered; adsorption of contaminants from the ambient gas, and surface diffusion effects from the surrounding contaminants. Re-contamination rates for Ag, Cu and Ni were studied under two distinct gas pressures to investigate the contamination effects from the ambient. Effects arising from surface diffusion were investigated by raising the temperature of the metal sample to increase the surface mobility of the contaminants. The total contribution of contamination species present in the ablation plume was estimated by conducting angular distribution measurements of the plume. Surface diffusion of the surrounding contaminants was found to be the dominant recontamination process.  相似文献   

2.
We present two sets of experimental results on the ablation-rate decrease with increase of the number of consecutive laser pulses hitting the same spot on the target surface. We have studied laser ablation of a carbon target with nanosecond pulses in two different interaction regimes: one with a XeCl laser (λ=308 nm) and the other with a Nd:YAG laser (λ=1064 nm), in both cases at the intensity ∼5×108 W/cm2 Two different mechanisms were found to be responsible for the ablation-rate decrease; they are directly related to the two different laser–matter interaction regimes. The UV-laser interaction is in the regime of transparent vapour (surface absorption). The increase of the neutral vapour density in the crater produced by the preceding laser pulses is the main reason for the decrease of ablation rate. With the IR laser each single laser pulse interacts with a partially ionised plume. With increase of the number of pulses hitting the same spot on the target surface, the laser–matter interaction regime gradually changes from the near-surface absorption to the volume absorption, resulting in the decrease in absorption in the target and thus in the decrease in the ablation rate. The change in the evaporation rate was considered for both vacuum and reactive-gas environments. Received: 21 February 2001 / Accepted: 26 February 2001 / Published online: 23 May 2001  相似文献   

3.
We investigate femtosecond laser ablation of aluminium using a hybrid simulation scheme. Two equations are solved simultaneously: one for the electronic system, which accounts for laser energy absorption and heat conduction, the other for the dynamics of the lattice where the ablation process takes place. For the electron-temperature a generalized heat-conduction equation is solved by applying a finite difference scheme. For the lattice properties, e.g. pressure, density or temperature, we use common molecular dynamics. Energy transfer between the subsystems is allowed by introducing an electron-phonon coupling term. This combined treatment of the electronic and atomic systems is an extension of the well known two-temperature model [Anisimov, Kapeliovich, Perel’man, Electron emission from metal surfaces exposed to ultra short laser pulses, JETP Lett. 39 (2)].  相似文献   

4.
Emission spectra of the laser ablation plume formed by the irradiation of Cu65/Zn35 binary alloy in water at the room temperature with 150-ns pulsed laser were measured. The spectra were analyzed by comparing with the theoretical calculation based on the assumption that self-absorption effect is negligible and that the same temperature can be applied to Cu atoms and Zn atoms in the plume. The calculation reproduced the spectra very well and gave reasonable temperature as a best-fit parameter. However, the best-fit value of the Cu atomic density relative to Zn is significantly low compared with the target composition. Care should be taken to perform in situ LIBS in liquid due to the complicated plume formation mechanism and dynamics of material intake into the plume.  相似文献   

5.
Powerful ultrafast laser pulses have a unique capability to ablate material from the surface without heat propagation into the bulk due to the non-linear nature of the laser-surface interaction. This quality offers a new application of ultrafast lasers for restoration of objects of art and heritage artefacts. We discuss the laser-based cleaning methods used in art restoration, analyse the potential advantages and challenges of using ultrafast laser pulses, and present new encouraging results on using ultrafast lasers in the field of heritage conservation.  相似文献   

6.
The aim of our experiment was to produce a material with BH bonds for applications in hydrogen storage and generation. By using KrF excimer laser (λ = 248 nm) ablation of borax (Na2B4O7) target, thin films were deposited on KBr and silicon substrates. Ablation was performed both in vacuum and in hydrogen atmosphere. DC glow discharge technique was utilized to enhance hydrogen gas ionization. Experiments were performed using laser fluence from 5 to 20 J/cm2. Films were deposited under gas pressure of 1 × 10−5 to 5 × 10−2 mbar and substrate temperatures of 130-450 °C. Scanning electron microscopy analysis of films showed presence of circular particulates. Film thickness, roughness and particulates number increased with increase in laser fluence. Energy dispersive X-ray spectroscopy analysis shows that sodium content in the particulates is higher than in the target. This effect is discussed in terms of atomic arrangements (both at surface and bulk) in systems where ionic and covalent bonds are present and by looking at the increased surface/bulk ratio of the particulates with respect to the deposited films. The Fourier transform infrared spectroscopy measurements showed presence of BO stretching and BOB bending bonds. Possible reasons for absence of BH bonds are attributed to binding enthalpy of the competing molecules.  相似文献   

7.
The mechanisms involved into the formation of clusters by pulsed laser ablation are studied both numerically and experimentally. To facilitate the model validation by comparison with experimental results, the time and length scales of the simulation are considerably increased. This increase is achieved by using a combination of molecular dynamics (MD) and the direct simulation Monte Carlo (DSMC) methods. The combined MD-DSMC model is then used to compare the relative contribution of the two channels of the cluster production by laser ablation: (i) direct cluster ejection upon the laser-material interaction, and (ii) collisional sticking and aggregation in the ablated gas flow. Calculation results demonstrate that both of these mechanisms play a role. The initial cluster ejection provides cluster precursors thus eliminating the three-body collision bottleneck in the cluster growth process. The presence of clusters thus facilitates the following collisional condensation and evaporation processes. The rates of these processes become considerable, leading to the modification of not only the plume cluster composition, but also the dynamics of the plume expansion. Calculation results explain several recent experimental findings.  相似文献   

8.
Collisional processes leading to the formation of nanoparticles in a laser-ablated plume are numerically simulated with the aid of an atomistic-level model based on direct simulation Monte Carlo (DSMC) method. The formation of nanoparticles in nanosecond laser ablation of a mono-atomic target is investigated in the presence of an inert background gas. The DSMC procedure is modified in order to account for numerous plume species and to describe several reactions (i.e., recombination/dissociation, sticking, evaporation) taking place in the plume and affecting the size and spatial distribution of the produced nanoclusters. Calculation results allow us to visualize the nanoparticles and to correlate their space distributions with plume dynamics. In addition, cluster size distributions are investigated at different pressures. The effects of the background gas on cluster formation within the plume are furthermore shown.  相似文献   

9.
We measured the momentum coupling coefficient Cm and laser-generated ion drift velocity and temperature in the femtosecond (fs) region, over a laser intensity range from ablation threshold to about one hundred times threshold. Targets were several pure metals and three organic compounds. The organic compounds were exothermic polymers specifically developed for the micro-laser plasma thruster, and two of these used “tuned absorbers” rather than carbon particles for laser absorption. The metals ranged from Li to W in atomic weight. We measured time of flight (TOF) profiles for ions. Specific impulse reached record values for this type of measurement and ablation efficiency was near 100%. These measurements extend the laser pulsewidth three orders of magnitude downward in pulsewidth relative to previous reports. Over this range, we found Cm to be essentially constant. Ion velocity ranged from 60 to 180 km/s.  相似文献   

10.
Fundamentals and applications of polymers designed for laser ablation   总被引:1,自引:0,他引:1  
The ablation characteristics of various polymers were studied at low and high fluences for an irradiation wavelength of 308 nm. The polymers can be divided into three groups, i.e. polymers containing triazene groups, designed ester groups, and reference polymers, such as polyimide. The polymers containing the photochemically most active group (triazene) exhibit the lowest thresholds of ablation (as low as 25 mJ cm-2) and the highest etch rates (e.g. 250 nm/pulse at 100 mJ cm-2), followed by the designed polyesters and then polyimide. Neither the linear nor the effective absorption coefficients have a clear influence on the ablation characteristics. The different behavior of polyimide might be explained by a pronounced thermal part in the ablation mechanism. The laser-induced decomposition of the designed polymers was studied by nanosecond interferometry and shadowgraphy. The etching of the triazene polymer starts and ends with the laser pulse, indicating photochemical ablation. Shadowgraphy reveals mainly gaseous products and a pronounced shockwave in air. The designed polymers were tested for an application as the polymer fuel in laser plasma thrusters. Received: 21 October 2002 / Accepted: 20 January 2003 / Published online: 28 May 2003 RID="*" ID="*"Corresponding author. Fax: +41-56/3104-412, E-mail: thomas.lippert@psi.ch  相似文献   

11.
We report an investigation of the ablation of NaCl crystals at the 157-nm wavelength of the F2 laser where there is very strong excitonic absorption. Probe-beam deflection and etch-rate measurements show that the interaction is characterised by a low ablation threshold (∼80 mJ cm-2) and a capability for controllable material removal at the nanometer level. Scanning electron microscopy of the exposed surfaces show this to be microscopically smooth but with fine cracks present. It is demonstrated that micron-scale features can be formed in NaCl using 157-nm laser ablation, a result attributed to the strongly localised optical and thermal nature of the interaction. The results are discussed within the framework of a thermal vaporisation model. Received: 29 May 2002 / Accepted: 17 July 2002 / Published online: 4 November 2002 RID="*" ID="*"Corresponding author. Fax: +44-1482/465606, E-mail: p.e.dyer@hull.ac.uk  相似文献   

12.
We present evidence suggesting that XeCl laser ablation of a weakly absorbing poly-methyl-methacrylate (PMMA) polymer, done by chemical, thermal bond breaking of the polymer chain or optical breakdown of the material, which involves plasma generation, creates a cloud of small asymmetric near the surface bubbles, which subsequently expand and aggregate during the same laser pulse duration or in subsequent pulses depending on the laser pulse energy. When a critical volume is reached each bubble collapses in a high pressure and temperature central point and rebounds ejecting a hot jet of material on the non-irradiated area of the polymer and creating craters on the surface. A characteristic bipolar pressure wave corresponding to the bubble collapse, explosion and rebound is observed. The number density of the craters on the surface is a function of the laser pulse sequence number and the laser pulse energy density.  相似文献   

13.
Laser ablation of titanium in vacuum was performed using single- and dual-pulse regime in order to study crater formation. Crater profiles were analyzed by optical microscopy. It was found that the repetition-rate plays an important role in a process of laser ablation. The drilling is most effective for the highest repetition-rate. For the same total number of laser pulses clear drilling enhancement was achieved by dual-pulse regime of ablation in comparison to single-pulse regime. The strongest ablation rate in dual-pulse regime was achieved for the delay time between the pulses τ = 370 ns. Results are discussed in terms of decreased ablation threshold due to continuous heating of the target during the experiment.  相似文献   

14.
The back flux value at polyatomic gas expansion under pulsed laser evaporation is determined on the basis of one-dimensional direct Monte Carlo simulation. Calculations are performed for a wide range of evaporated matter amount. Taking into account rotational and vibrational degrees of freedom substantially increases the back flux. Dependence of the back recondensed fraction on the relaxation collision number is shown. The data are generally in good agreement with available analytical predictions. Importance of consideration of energy transfer from the internal degrees of freedom to the translational ones is illustrated by an example of pulsed laser evaporation of polytetrafluoroethylene (PTFE) and polymethylmethacrylate (PMMA).  相似文献   

15.
Ablation process of 1 kHz rate femtosecond lasers (pulse duration 148 fs, wavelength 775 nm) with Au films on silica substrates has been systemically studied. The single-pulse threshold can be obtained directly. For the multiple pulses the ablation threshold varies with the number of pulses applied to the surface due to the incubation effect. From the plot of accumulated laser fluence N × ?th(N) and the number of laser pulses N, incubation coefficient of Au film can be obtained (s = 0.765). As the pulse energy is increased, the single pulse ablation rate is increasing following two ablation logarithmic regimes, which can be explained by previous research.  相似文献   

16.
17.
Single shot ablation of metallic materials of aluminium, titanium alloy (Ti6Al4V) and gold has been studied with 10 picoseconds (ps) laser pulses experimentally and theoretically. The ablation rate variation at high fluence was explained by a simplified predictive model based on critical-point phase separation (CPPS) theory. A comparison between experimental and numerical results inferred that CPPS may well be the dominant ablation mechanism for high fluence laser ablation at 10 ps laser duration.  相似文献   

18.
The water droplet laser plasma source has been shown to have many attractive features as a continuous, almost debris-free source for extreme ultraviolet (EUV) and X-ray applications. Through a dual experimental and theoretical study, we analyze the interaction physics between the laser light and the target. The hydrodynamic laser plasma simulation code, Medusa103 is used to model the electron density distribution for comparison to electron density distributions obtained through Abel inversion of plasma interferograms. In addition, flat field EUV spectra are compared to synthetic spectra calculated with the atomic physics code RATION. Received: 31 October 2002 / Accepted: 8 February 2003 / Published online: 28 May 2003 RID="*" ID="*"Present address: Naval Reseach Laboratory, Washington D.C. RID="**" ID="**"Present address: Xtreme Technologies, G?ttingen, Germany. RID="***" ID="***"Corresponding author. Fax: +1-407/823-3570, E-mail: mrichard@mail.ucf.edu  相似文献   

19.
H.C. Joshi 《Physics letters. A》2009,373(37):3350-3353
Atomic analysis of the emission from laser-produced plasma from bulk lithium (Li) block has been made. The observed changes in the emission from lithium neutral and ionic species have been explained by considering various atomic processes. We demonstrate that the excitation process in case of neutral lithium Li (I) is electron impact excitation whereas for singly ionized lithium Li (II), radiative recombination is the dominant mechanism. We also show that the ionized species are dominant in the LPP plume.  相似文献   

20.
In this paper we report the results of an investigation into surface deformation caused by thermal effects during excimer laser ablation of polyimide. Obvious surface deformation around hole entrances was observed during the experiment. The surface topology and cross section of the ablated holes were analyzed using topography measurement tool and scanning electron microscopy. It was shown that a micro-hump of 17 to 150 nm in height and 1 to 3 μm in width was formed above the level of the unablated surface. The deformed surface showed rough and color-changed characteristics. An optical diffraction model was employed to explain the cause of this kind of deformation. It was found that the ablating and heating by a near- and under-threshold laser beam became a thermal effect in polyimide material ablation, which was contributed to by a diffraction effect of the optical projection system. Received: 9 October 2001 / Accepted: 17 October 2001 / Published online: 23 January 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号