首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bonding and growth mechanism of photochemically attached olefin molecules to (1 0 0)(2 × 1):H diamond is characterized using atomic force (AFM) and scanning tunneling microscopy (STM) experiments in combination with molecular orbital calculations. To identify growth schemas, diamond surfaces after 10, 40 and 90 min of photo-chemically stimulated growth have been characterized. These data show clearly island formation which is discussed taking into account a growth model from silicon. The island growth shows no directional properties which are attributed to arrangement and geometrical properties of hydrogen terminated carbon bonds at the surface of (1 0 0) oriented (2 × 1) reconstructed diamond.  相似文献   

2.
The diamond (1 0 0) surface with amino terminations is investigated based on density function theory within the generalized gradient approximation. Our calculated negative electron affinity of diamond (1 0 0) surface with hydrogen termination provides a necessary condition for initiating radical reaction. The results display that the ammonia molecule can form stable C-N covalent bonds on the diamond surface. In addition, due to the lower adsorption energy of one amino group binding on diamond surface, single amino group (SAG) model is easy to be realized in experiment with the comparison of double amino group (DAG) model. The adsorbed ammonia molecule will induce acceptor-like gap states with little change of the valence and conduction band of diamond in SAG model. The adsorption mechanism in the formation of ammonia monolayer on H-terminated diamond (1 0 0) surface, and two possible adsorption structures (SAG and DAG) were especially studied.  相似文献   

3.
Photoelectron diffraction in the layer-resolved mode brings more detailed information about local atomic arrangement than is obtained in the standard mode. This is demonstrated in crystals with diamond and zinc-blende structures, both for unpolarized photon excitation as well as for circularly polarized excitation. The full angular distributions of photoemission intensities are evaluated for large atomic clusters representing ideally truncated surfaces of Si(0 0 1) and GaAs(0 0 1). Highly structured layer-resolved patterns enable a more detailed understanding of the standard mode outcomes. Photoelectron intensities from atomic layers placed at different depths under the crystal surface provide direct evidence about electron attenuation and its anisotropy in crystals.  相似文献   

4.
Zhipeng Chang 《Surface science》2007,601(9):2005-2011
Methanethiol adsorbed on Ru(0 0 0 1)-p(2 × 2)O has been studied by TPD and XPS. The dissociation of methanethiol to methylthiolate and hydrogen at 90 K is evidenced by the observation of hydroxyl and water. The saturation coverage of methylthiolate is ∼0.15 ML, measured by both XPS and TPD. A detailed analysis suggests that only the hcp-hollow sites have been occupied. Upon annealing the surface, water and hydroxyl desorb from the surface at ∼210 K. Methylthiolate decomposes to methyl radical and atomic sulphur via C-S cleavage between 350 and 450 K. Some methyl radicals (0.05 ML) have been transferred to Ru atoms before they decompose to carbon and hydrogen. The rest of methyl radicals desorb as gaseous phase. No evidence for the transfer of methyl radical to surface oxygen has been found.  相似文献   

5.
Structure and energy related properties of neutral and charged vacancies on relaxed diamond (1 0 0) (2 × 1) surface were investigated by means of density functional theory. Calculations indicate that the diffusion of a single vacancy from the top surface layer to the second layer is not energetically favored. Analysis of energies in charged system shows that neutral state is most stable on diamond (1 0 0) (2 × 1) surface. The multiplicity of possible states can exist on diamond (1 0 0) surface in dependence on the surface Fermi level, which supports that surface diffusion of a vacancy is mediated by the change of vacancy charge states. Analysis of density of states shows surface vacancy can be effectively measured by photoelectricity technology.  相似文献   

6.
In situ electrochemical scanning tunneling microscopy (STM) has been used to examine the structures of benzenethiol adlayers on Au(1 0 0) and Pt(1 0 0) electrodes in 0.1 M HClO4, revealing the formation of well-ordered adlattices of Au(1 0 0)-(√2 × √5) between 0.2 and 0.9 V and Pt(1 0 0)-(√2 × √2)R45° between 0 and 0.5 V (versus reversible hydrogen electrode), respectively. The coverage of Au(1 0 0)-(√2 × √5) is 0.33, which is identical to those observed for upright alkanethiol admolecules on Au(1 1 1). In comparison, the coverage of Pt(1 0 0)-(√2 × √2)R45° - benzenethiol is 0.5, much higher than those of thiol molecules on gold surfaces. This result suggests that benzenethiol admolecules on Pt(1 0 0) could stand even more upright than those on Au(1 0 0). All benzenethiol admolecules were imaged by the STM as protrusions with equal corrugation heights, suggesting identical molecular registries on Au(1 0 0) and Pt(1 0 0) electrodes, respectively. Modulation of the potential of a benzenethiol-coated Au(1 0 0) electrode resulted in irreversible desorption of admolecules at E ? 0.1 V (vs. reversible hydrogen electrode) and oxidation of admolecules at E ? 0.9 V. In contrast, benzenethiol admolecule was not desorbed from Pt(1 0 0) at potentials as negative as the onset of hydrogen evolution. Raising the potential rendered deposition of more benzenethiol molecules before oxidation of admolecules commenced at E > 0.9 V.  相似文献   

7.
Subsequent III-V integration by metal-organic vapor phase epitaxy (MOVPE) or chemical vapor deposition (CVD) necessitates elaborate preparation of Si(1 0 0) substrates in chemical vapor environments characterized by the presence of hydrogen used as process gas and of various precursor molecules. The atomic structure of Si(1 0 0) surfaces prepared in a MOVPE reactor was investigated by low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) available through a dedicated, contamination-free sample transfer to ultra high vacuum (UHV). Since the substrate misorientation has a fundamental impact on the atomic surface structure, we selected a representative set consisting of Si(1 0 0) with 0.1°, 2° and 6° off-cut in [0 1 1] direction for our study. Similar to standard UHV preparation, the LEED and STM results of the CVD-prepared Si(1 0 0) surfaces indicated two-domain (2 × 1)/(1 × 2) reconstructions for lower misorientations implying a predominance of single-layer steps undesirable for subsequent III-V layers. However, double-layer steps developed on 6° misoriented Si(1 0 0) substrates, but STM also showed odd-numbered step heights and LEED confirmed the presence of minority surface reconstruction domains. Strongly depending on misorientation, the STM images revealed complex step structures correlated to the relative dimer orientation on the terraces.  相似文献   

8.
Adsorption of carbon monoxide on Pd(3 1 1) and (2 1 1) stepped surfaces has been investigated by the extended London-Eyring-Polyani-Sato (LEPS) method constructed using a 5-parameter Morse potential. The calculated results show that there exist common characteristics of CO adsorption on the two surfaces. At low coverage, CO occupies threefold hollow site of the (1 1 1) terrace and is tilted with respect to the surface normal. Among the threefold hollow sites on the (1 1 1) terrace, the nearer the site is to the step, the greater is the influence of the step. The twofold bridge site on the (1 0 0) step is also a stable adsorption site at high coverage. Because of the different lengths of the (1 1 1) terraces, the (3 1 1) and (2 1 1) stepped surfaces have different characteristics. A number of new sites are exposed on the boundary regions, including the fourfold hollow site (H4) of the (3 1 1) surface and the fivefold hollow site (H5) of the (2 1 1) surface. At high coverage, CO resides in the H5 site of the (2 1 1) surface, but the H4 site of the (3 1 1) surface is not a stable adsorption site. This study further shows that the on-top site on the (1 0 0) step of Pd(3 1 1) is a stable adsorption site, but the same type of site on Pd(2 1 1) is not.  相似文献   

9.
The characteristic energy band values such as the Fermi-level position with respect to valence band top for a boron-doped p-type hydrogen-terminated chemical-vapor-deposition (CVD) diamond (0 0 1)2 × 1 surface and for a clean CVD diamond (0 0 1)2 × 1 surface have been determined by a new method with an accuracy of ±0.02 eV. The electron attenuation length for the clean diamond (0 0 1)2 × 1 surface for the electron kinetic energy of C 1s X-ray photoemission peak by Mg Kα excitation is experimentally determined to be 2.1-2.2 nm. These values are compared and discussed with the previously reported experimental and simulation values.  相似文献   

10.
The adsorption of atomic Se on a Fe(1 1 0) surface is examined using the density functional theory (DFT). Selenium is adsorbed in high-symmetry adsorption sites: the -short and long-bridge, and atop sites at 1/2, 1/4, and 1 monolayer (ML) coverages. The long bridge (LB) site is found to be the most stable, followed by the short bridge (SB) and top sites (T). The following overlayer structures were examined, p(2 × 2), c(2 × 2), and p(1 × 1), which correspond to 1/4 ML, 1/2 ML, and 1 ML respectively. Adsorption energy is −5.23 eV at 1/4 ML. Se adsorption results in surface reconstruction, being more extensive for adsorption in the long bridge site at 1/2 ML, with vertical displacements between +8.63 and −6.69% -with regard to the original Fe position-, affecting the 1st and 2nd neighbours. The largest displacement in x or y-directions was determined to be 0.011, 0.030, and 0.021 Å for atop and bridge sites. Comparisons between Se-adsorbed and pure Fe surfaces revealed reductions in the magnetic moments of surface-layer Fe atoms in the vicinity of the Se. At the long bridge site, the presence of Se causes a decrease in the surface Fe d-orbital density of states between 4 and 5 eV below Fermi level. The density of states present a contribution of Se states at −3.1 eV and −12.9 eV. stabilized after adsorption. The Fe-Fe overlap population decrease and a Fe-Se bond are formed at the expense of the metallic bond.  相似文献   

11.
The c(4 × 2) structures in (0 0 1) surfaces of Si and Ge have been studied by low-energy electron diffraction (LEED). Using a proper cleaning method for the Si surface, we were able to observe clear c(4 × 2) LEED patterns up to incident energy of ∼400 eV as well as the Ge surface. Extensive experimental intensity-voltage curves allowed us to optimize the asymmetric dimer model up to the eighth layer (including the dimer layer) in depth in the dynamical LEED calculation. Optimized structural parameters are almost the same for the Si and Ge except for the height of the buckled-up atom of the asymmetric dimer. For the Ge surface, the structural parameters are in excellent agreement with those obtained by a previous theoretical calculation. The tilt angle and bond length of the dimer are 18 ± 1 (19 ± 1)° and 2.4 ± 0.1 (2.5 ± 0.1) Å for the Si(0 0 1) (Ge(0 0 1)), respectively.  相似文献   

12.
By means of cluster models coupled with density functional theory, we have studied the hydroboration of the Ge(1 0 0)-2 × 1 surface with BH3. It was found that the Ge(1 0 0) surface exhibits rather different surface reactivity toward the dissociative adsorption of BH3 compared to the C(1 0 0) and Si(1 0 0) surfaces. The strong interaction still exists between the as-formed BH2 and H adspeices although the dissociative adsorption of BH3 on the Ge(1 0 0) surface occurs readily, which is in distinct contrast to that on the C(1 0 0) and Si(1 0 0) surfaces. This can be understood by the electrophilic nature of the down Ge atom, which makes it unfavourable to form a GeH bond with the dissociating proton-like hydrogen. Alternatively, it can be attributed to the weak proton affinity of the Ge(1 0 0) surface. Nevertheless, the overall dissociative adsorption of BH3 on group IV semiconductor surfaces is favourable both thermodynamically and kinetically, suggesting the interesting analogy and similar diversity chemistry of solid surface in the same group.  相似文献   

13.
The adsorption and reactivity of SO2 on the Ir(1 1 1) and Rh(1 1 1) surfaces were studied by surface science techniques. X-ray photoelectron spectroscopy measurements showed that SO2 was molecularly adsorbed on both the Ir(1 1 1) surface and the Rh(1 1 1) surface at 200 K. Adsorbed SO2 on the Ir(1 1 1) surface disproportionated to atomic sulfur and SO3 at 300 K, whereas adsorbed SO2 on the Rh(1 1 1) surface dissociated to atomic sulfur and oxygen above 250 K. Only atomic sulfur was present on both surfaces above 500 K, but the formation process and structure of the adsorbed atomic sulfur on Ir(1 1 1) were different from those on Rh(1 1 1). On Ir(1 1 1), atomic sulfur reacted with surface oxygen and was completely removed from the surface, whereas on Rh(1 1 1), sulfur did not react with oxygen.  相似文献   

14.
Supersonic molecular beam technique combined with high resolution X-ray photoelectron spectroscopy using synchrotron radiation was applied to the study of the dynamics of dissociative adsorption of oxygen on Ru(0 0 0 1) surface in high coverage region. The Ru(0 0 0 1) surface pre-covered with oxygen atoms of 0.5 monolayer, which corresponds to the p(2 × 1)-O structure, was dosed to oxygen molecules with translational energy of 0.5 eV. Oxygen uptake was compared between the cases with and without the beam source heated in order to verify the effects of internal energy of oxygen. We found drastic enhancement in initial sticking probability of oxygen when the beam source was heated to 1400 K. We concluded that the enhancement of sticking probability is mainly caused by molecular vibrational excitation, indicating that dissociation barrier is located in the exit channel on potential energy surface.  相似文献   

15.
The adsorption of cyanide (CN) or oxygen atom, as well as the coadsorption of CN + O on Cu (1 0 0) surface is studied by using density functional theory (DFT) and the cluster model method. Cu14 cluster is used to simulate the surface. Perpendicular and parallel bonding geometries of CN adsorbed on Cu (1 0 0) surface are considered, respectively. The present calculations show that the CN may be absorbed on top and bridge sites by carbon atom of cyanide (C-down), and C-down on top site is the most favorable. The adsorbed C-N stretch frequencies compared with that of the gaseous CN species are all red-shifted, except the C-down on top site. The charge transfer from the surface to the CN species leads to an increase in work function for the Cu surface. The oxygen atom adsorbed on the four-fold hollow site of Cu (1 0 0) is the most favorable, and is consistent with the experimental study. The coadsorption of O at a four-fold hollow site tends to block adsorption of CN at the nearby sites. If O coverage increases, the CN may be adsorbed on the top and bridges sites with the C-down model. The reaction CN + O → OCN on the Cu (1 0 0) is predicted to be exothermic, and formed OCN species may be stably absorbed on the Cu (1 0 0).  相似文献   

16.
We have studied the growth of Ag on Ge/Si(1 1 1) substrates. The Ge/Si(1 1 1) substrates were prepared by depositing one monolayer (ML) of Ge on Si(1 1 1)-(7 × 7) surfaces. Following Ge deposition the reflection high energy electron diffraction (RHEED) pattern changed to a (1 × 1) pattern. Ge as well as Ag deposition was carried out at 550 °C. Ag deposition on Ge/Si(1 1 1) substrates up to 10 ML has shown a prominent (√3 × √3)-R30° RHEED pattern along with a streak structure from Ag(1 1 1) surface. Scanning electron microscopy (SEM) shows the formation of Ag islands along with a large fraction of open area, which presumably has the Ag-induced (√3 × √3)-R30° structure on the Ge/Si(1 1 1) surface. X-ray diffraction (XRD) experiments show the presence of only (1 1 1) peak of Ag indicating epitaxial growth of Ag on Ge/Si(1 1 1) surfaces. The possibility of growing a strain-tuned (tensile to compressive) Ag(1 1 1) layer on Ge/Si(1 1 1) substrates is discussed.  相似文献   

17.
A theoretical epitaxial growth model with realistic barriers for surface diffusion is investigated by means of kinetic Monte Carlo simulations to study the growth modes of metastable (3 3 1) nanofacets on Au and Pt(1 1 0) surfaces. The results show that under experimental atomic fluxes, the (3 3 1) nanofacets grow by 2D nucleation at low temperature in the submonolayer regime. A metastable growth phase diagram that can be useful to experimentalists is presented and looks similar to the one found for the stationary growth of the bcc(0 0 1) surface in the kinetic 6-vertex model.  相似文献   

18.
We test the response of the √3 × √3α reconstructions formed by 1/3 monolayer of tin adatoms on silicon and germanium (1 1 1) surfaces upon doping with electrons or holes, using potassium or iodine as probes/perturbers of the initial electronic structures. From detailed synchrotron radiation photoelectron spectroscopy studies we show that doping with either electrons or holes plays a complimentary role on the Si and Ge surfaces and, especially, leads to complete conversion of the Sn 4d two-component spectra into single line shapes. We find that the low binding energy component of the Sn core level for both Si and Ge surfaces corresponds to Sn adatoms with higher electronic charge, than the Sn adatoms that contribute to the core level high binding energy signal. This could be analyzed as Sn adatoms with different valence state.  相似文献   

19.
The sticking of hydrogen atoms with kinetic energies in the range 0.003-10 eV on a clean (0 0 1) tungsten surface has been investigated using molecular dynamics simulations. The atoms are found to stick to the surface at 0 and 300 K, with a sticking coefficient smaller than 0.6 for kinetic energies higher than 3 meV. The adsorption sites for H on the W(0 0 1) surface are also presented. The dominant site is in perfect agreement with the experimentally found bridge site.  相似文献   

20.
Minyoung Lee 《Surface science》2009,603(24):3404-1431
Atomic oxygen embedment into a Cu(1 0 0) surface is studied by density functional theory calculation and the nudged elastic band method. As the oxygen coverage increases on the unreconstructed surface from 0.25 monolayer (ML) to 0.75 ML, the energy barrier for oxygen embedment decreases and an energetically favorable sub-surface site is found at 0.75 ML coverage. At a fixed oxygen coverage of 0.5 ML, the oxygen embedment energetics vary with the surface morphology and the embedment is found to be more probable for reconstructed structures compared to the bare surface. On the missing-row reconstructed surface, we find that the energy barrier for atomic oxygen embedment is smaller through the missing-row compared to other paths, suggesting a mechanism for the formation of sub-surface oxygen structures that are consistent with a recent experiment. The energy barrier for sub-surface oxygen diffusion is predicted to be less than that for on-surface diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号