首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We report the first observation of hydrogen induced displacement of chemisorbed CO from the Ni(100) surface. This displacement is unexpected since the heat of adsorption for CO is 126 kJ/mole, about 30 kJ/mole larger than the 96 kJ/mole heat of adsorption for hydrogen, Rates of displacement were measured by Fluorescence Yield Near Edge Spectroscopy (FYNES) and Temperature Programmed Desorption (TPD). Excellent agreement is observed between both methods. Hydrogen pressures in the 10~(-4) to 10~(-1) Torr range cause displacement of chemisorbed CO in the 270 to 330 K temperature range in a matter of minutes. The displacement reaction is clearly positive order in CO coverage. The CO coverage data suggested two first order reaction regions with a decrease in rate with decreasing coverage. Displacement is about half order in hydrogen pressure. The activation energy for the high coverage displacement rate is approximately 29±4 kJ/mole while the activation energy for the low coverage displacement rate about 46  相似文献   

2.
The rate determining step and the energy barrier involved in hydrogen adsorption on Pt/WO_3- ZrO_2 were studied based on the assumption that the hydrogen adsorption occurs only through Pt sites. The rate of hydrogen adsorption on Pt/WO_3-ZrO_2 was measured in the adsorption temperature range of 323-573 K and an initial hydrogen pressure of 50 Torr.The rates of hydrogen uptake were very high for the initial few minutes and the adsorption continued for more than 5 h below 523 K.The hydrogen uptake far exceeded the H/Pt ratio of unity for all adsorption temperatures,indicating that the adsorption of hydrogen involved the dissociative adsorption of hydrogen on Pt sites to form hydrogen atoms,the spillover of hydrogen atoms onto the surface of the WO_3-ZrO2 catalyst,the diffusion of spiltover hydrogen atom over the surface of the WO_3-ZrO_2 catalyst,and the formation of protonic acid site originated from hydrogen atom by releasing an electron in which the electron may react with a second hydrogen atom to form a hydride near the Lewis acid site.The rate determining step was the spillover with the activation energy of 12.3 kJ/mol.The rate of hydrogen adsorption cannot be expressed by the rate equation based on the assumption that the rate determining step is the surface diffusion.The activity of Pt/WO_3-ZrO_2 was examined on n-heptane isomerization in which the increase of hydrogen partial pressure provided positive-effect on the conversion of n-heptane and negative-effect on the selectivity towards iso-heptane.  相似文献   

3.
The non-isothermal degradation kinetics of N,N'-di(diethoxythiophosphoryl)-1,4-phenylenediamine in N2 was studied by TG-DTG techniques.The kinetic parameters,including the activation energy and pre-exponential factor of the degradation process for the title compound were calculated by means of the Kissinger and Flynn-Wall-Ozawa(FWO)method and the thermal degradation mechanism of the title compound was also studied with the Satava-Sestak methods.The results indicate that the activation energy and pre-exponential factor are 152.61 kJ/mol and 9.06×101 4s -1with the Kissinger method and 154.08 kJ/mol with the Flynn-Wall-Ozawa method,respectively.It has been shown that the degradation of the title compound follows a kinetic model of one-dimensional diffusion or parabolic law,the kinetic function is G(α)=α2and the reaction order is n=2.  相似文献   

4.
A mathematical model of COS hydrolysis on Al2O3, with fouling of catalyst, has been developed. Kinetic studies were carried out in a fixed bed reactor under atmospheric pressure and low temperature (40-70℃). The effects of the COS inlet concentration, temperature, and relative humidity were analyzed. Experimental results of breakthrough curves were used to obtain kinetic parameters, which accounted for effects of S deposition on the inner-face of the catalyst. The model described the experimental breakthrough curves satisfactorily and well explained the performance of COS hydrolysis in the presence of oxygen. The exothermic heat of adsorption and activation energy, assuming Arrhenius type of temperature dependence of the equilibrium constant, were determined. Activation energy of COS hydrolysis and H2S oxidation were 35.9 kJ/mol, 19.6 kJ/mol; adsorption heat of H2O and H2S on Al2O3 were 45.1 and 60.1 kJ/mol respectively. Deactivation coefficient (α) was used to quantify the behavior of COS hydrolysis at different operating conditions. The effect of relative humidity on α is significant in the relative humidity range under study. Experimental data accorded well with model data in the studied range.  相似文献   

5.
The thermal behavior, mechanism and kinetic parameters of the exothermic first-stage decomposition of the title compound in a temperature-programmed mode were investigated by means of DSC, TG-DTG and IR. The reaction mechanism was proposed. The kinetic model function in differential form, apparent activation energy(Ea) and pre-exponential factor(A) of this reaction are (3/2)(1-a)[-ln(1-a)]1/3, 185.52 kJ/mol and 1017.78 s-1, respectively. The critical temperature of the thermal explosion of the compound is 201.30 ℃. The values of ΔS≠, ΔH≠ and ΔG≠ of this reaction are 72.46 J/(mol · K), 175.1 kJ/mol and 141.50 kJ/mol, respectively.  相似文献   

6.
The conversion between anamorphoses of the dihydrated glycine complex was studied by means of B3LYP/6-31++G**. It was found that proton transfer was accompanied by hydrogen bond transfer in the process of conversion between different kinds of anamorphoses. With proton transfer, the electrostatic action was notably increased and the hydrogen-bonding action was evidently strengthened when the dihydrated neutral glycine complex converts into dihydrated zwitterionic glycine complex. The activation energy required for hydrogen bond transfer between dihydrated neutral glycine complexes is very low (6.32 kJ·mol-1); however, the hydrogen bond transfer between dihydrated zwitterionic glycine complexes is rather difficult with the required activation energy of 13.52 kJ·mol-1 due to the relatively strong electrostatic action. The activation energy required by proton transfer is at least 27.33 kJ·mol-1, higher than that needed for hydrogen bond transfer. The activation energy for either hydrogen bond transfer or proton transfer is in the bond-energy scope of medium-strong hydrogen bond, so the four kinds of anamorphoses of the dihydrated glycine complex could convert mutually.  相似文献   

7.
The 1,3,5-triazine-water hydrogen bonding interactions have been investigated using the density functional theory B3LYP method and 6-31 ++G^** basis, obtaining one, two and seven energy minima of the ground states for the 1,3,5-triazine-water, 1,3,5-triazine-(water)2 and 1,3,5-triazine-(water)3 complexes respectively. The fully optimized geometries and binding energies were reported for the various stationary points. The global minima of 1,3,5-triazine-(water)2 and 1,3,5-triazine-(water)3 complexes have a hydrogen bond N…H-O and a chain of water molecules, terminated by a hydrogen bond O…H-C. The binding energies are 13.38, 39.52 and 67.79 kJ/mol for the most stable 1,3,5-triazine-water, 1,3,5-triazine-(water)2 and 1,3,5-triazine-(water)3 complexes respectively, after the basis set superposition error and zero point energy corrections. The H-O symmetric stretching modes of water in the complexes are red-shifted relative to those of the monomer water. In addition, the NBO analysis indicates that inter-molecule charge transfer is 0.02145 e, 0.02501 e and 0.02777 e for the most stable 1 : 1, 1 : 2 and 1 : 3 complexes between 1,3,5-triazine and water, respectively.  相似文献   

8.
Selectivity control is a difficult scientific and industrial challenge in methanol-to-olefins(MTO)conversion.It has been experimentally established that the topology of zeolite catalysts influenced the distribution of products.Besides the topology effect on reaction kinetics,the topology influences the diffusion of reactants and products in catalysts as well.In this work,by using COMPASS force-field molecular dynamics method,we investigated the intracrystalline diffusion of ethene and propene in four different zeolites,CHA,MFI,BEA and FAU,at different temperatures.The self-diffusion coefficients and diffusion activation barriers were calculated.A strong restriction on the diffusion of propene in CHA was observed because the self-diffusion coefficient ratio of ethene to propene is larger than 18 and the diffusion activation barrier of propene is more than 20 kJ/mol in CHA.This ratio decreases with the increase of temperature in the four investigated zeolites.The shape selectivity on products from diffusion perspective can provide some implications on the understanding of the selectivity difference between HSAPO-34 and HZSM-5 catalysts for the MTO conversion.  相似文献   

9.
Stability of borohydrides is determined by the localization of the negative charge on the boron atom.Ionic liquids(ILs) allow to modify the stability of the borohydrides and promote new dehydrogenation pathways with a lower activation energy. The combination of borohydride and IL is very easy to realize and no expensive rare earth metals are required. The composite of the ILs with complex hydrides decreases the enthalpy and activation energy for the hydrogen desorption. The Coulomb interaction between borohydride and IL leads to a destabilization of the materials with a significantly lower enthalpy for hydrogen desorption. Here, we report a simple ion exchange reaction using various ILs, such as vinylbenzyltrimethylammonium chloride([VBTMA][Cl]), 1-butyl-3-methylimidazolium chloride([bmim][Cl]), and 1-ethyl-1-methylpyrrolidinium bromide([EMPY][Br]) with NaBH_4 to decrease the hydrogen desorption temperature. Dehydrogenation of 1-butyl-3-methylimidazolium borohydride([bmim][BH_4]) starts below 100 ℃. The quantity of desorbed hydrogen ranges between 2.4 wt% and 2.9 wt%, which is close to the theoretical content of hydrogen. The improvement in dehydrogenation is due to the strong amine cation that destabilizes borohydride by charge transfer.  相似文献   

10.
The Hartree-Fock and DFT/B3LYP methods have been employed to investigate the electronic structures of 1-ethy1-3-methyl-imidazolium cation(EMIM~ ),BF_4~-,PF_6~-,EMIM~ -BF_4~-,and EMIM~ -PF_6~- using the Gaussian-94 soft-package at 6-31 G(d,p)basis set level for hydrogen,carbon,nitrogen,boron, phosphorus,and fluorine atoms.Comparison of the electronic structures of the lowest energy of EMIM~ - BF_4~- and EMIM~ -PF_6~- pairs,and single EMIM~ ,BF_4~- and PF_6~- showed that the optimized EMIM~ -BF_4~- and EMIM~ -PF_6~- pair conformers were BF_4~- and PF_6~- outside the 5-ring plane between the ethyl group and the methyl group.The cohesion of C—H…F hydrogen bond between cation and anion is reinforced by charge assistance.The interaction energy between EMIM~ and PF_6~- is 328.8 kJ/mol at the B3LYP level and 326.6 kJ/mol at the Hartree-Fock level,whereas that between EMIM~ and BF_4~- is 353.5 kJ/mol at the B3LYP level and 350.5 kJ/mol at the Hartree-Fock level.The low energy interactions caused by bulky asymmetric EMIM~ ,and charge dispersion of cation and anion give rise to the low melting point of ionic liquid EMIM~ -BF_4~- and EMIM~ -PF_6~-.The two hydrogen bonding models of single hydrogen bond formation,and the hydrogen transfer between C_2 in EMIM~ and F in BF_4~- or PF_6~- were principally depicted.  相似文献   

11.
Density functional theory B3LYP method and second-order Moller-Plesset perturbation theory MP2 method were employed to obtain the optimized geometries of the ground state and interaction energy for diazines and water complexes. The results show that the ground state complexes have strong hydrogen bonding interaction with -20.99, -16.73 and -15.31 kJ/mol after basis set superposition error and zero-point vibration energy correction for pyridazine-water, pyrimidine-water and pyrazine-water, respectively, and large red-shift for the symmetric H-O stretching vibration frequencies due to the formation of N…H-O hydrogen bond in the diazine-water complexes. The NBO analysis indicates that intermolecular charge transfer are 0.0316, 0.0255 and 0.0265 e respectively. In addition, the first singlet (n,n*) vertical excitation energy of the monomer and the hydrogen bonding complexes between diazines and water was investigated by time-dependent density functional theory.  相似文献   

12.
Ordered mesoporous carbons CMK-3, CMK-1 coated with poly(methyl methacrylate)(PMMA)(CMK-3- PMMA and CMK-1-PMMA) and pristine mesoporous carbons CMK-3, CMK-1 were employed to adsorb vitamin B12(VB12) from water solution. Adsorption isotherm and kinetics of adsorption were investigated via batch experi- ments. It was found that the adsorption capacity of VB12 at 30, 40 and 50 °C can reach 688.2, 572.4 and 428.7 mg/g, respectively. The adsorption isotherm can be described by Langmuir model. The pseudo first- and second-order kinetic models were employed to fit the dynamic adsorption. It was found that the dynamic adsorption follows the pseudo second-order model. The thermodynamic equilibrium coefficients obtained at different temperatures were used to evaluate the thermodynamic constants ΔG0, ΔH0 and ΔS0. The negative value of Gibbs free energy, ΔG0 indicates that the adsorption occurred via a spontaneous process. The increase in the value of –ΔG0 with increasing temperature indicates that higher temperatures were favourable to the sorption process. The enthalpy values of ΔH040 kJ/mol(66.36 kJ/mol and 56.43 kJ/mol) for CMK-3-PMMA and CMK-1-PMMA confirm that chemisorption were involved in the adsorption process. This is consistent with the IR spectra and is another evidence for the formation of hydrogen bond between PMMA in the pore of CMK-3 and VB12.  相似文献   

13.
The deactivation kinetics of Pd(PPh3)2Cl2 in the monocarbonylation of benzyl chloride to synthesize phenylacetic acid is studied in this paper. Solid 1-(2-pyridylazo)-2-naphthol (PAN) is used as the colouring agent, and the concentration of Pd(PPh3)2Cl2 in the system is measured through absorptiometry. The result shows that the optimum condition of the chromogenic reaction between Pd2+ and PAN is: 0.5 ml of 0.04% PAN added to 10 ml of Pd2+ solution (1.0×10-6-2.0×10-5 mol/L), and heated in a constant temperature water bath at 40℃ for about 30 min, with pH of the solution being about 3.0. The molar coefficient of absorption is 1.384×104 L/(mol·cm); the orders of the hydrolytic reaction to the concentration of Pd(PPh3)2Cl2, PPh3, phenylacetic acid and NaOH are 0.5, minus 0.8, 2 and 1.2, respectively. The activation energy (E) of the hydrolytic reaction is 75.59 kJ/mol, and the pre-exponential factor is 1.68×1012.  相似文献   

14.
The application of high temperature liquid water(HTLW) to decomposition of lignin as efficient and green solution for phenolic compounds recovery was studied.Benzyl phenyl ether(BPE),the lignin model compound,was treated at temperatures ranging from 220 to 250℃.BPE undergo hydrolysis in HTLW,and main products were phenol and benzyl alcohol with the minimum selectivities of 75.7%and 82.8%,respectively.Lower temperature led to higher selectivity in 220-250℃temperature range.The kinetics on BPE hydrolysis was studied and the activation energy was determined as 150.3±12.5 kJ/mol with the first-order kinetic equations.Based on products distribution,the reaction mechanism for decomposition of benzyl phenyl ether was proposed.The investigated process provides insights into the design of a commercial method for utilization of lignin.  相似文献   

15.
Formic acid photodegradation is one of the most important reactions in organic pollution control, and helps to improve the hydrogen generation efficiency in titanium dioxide catalyzed water photodecomposition. Based on density functional theory and Reax FF molecular dynamics, the adsorption, diffusion and activation of formic acid on the different anatase TiO_2(101),(001),(010) surfaces are investigated.The result shows that the adsorption of COOH on anatase TiO_2 surface shrinks the energy gap between the dehydrogenation intermediate COOH and HCOO. On the anatase TiO_2(101) surface, the formic acid breaks the O–H bond at the first step with activation energy 0.24 eV, and the consequent break of α-H become much easier with activation energy 0.77 eV. The dissociation of α-H is the determination step of the HCOOH decomposition.  相似文献   

16.
吕春祥 《高分子科学》2010,28(3):367-376
<正>Thermal properties of acrylonitrile(AN)-acrylamide(AM) copolymers for carbon fibers were studied by DSC and in situ FTIR techniques in nitrogen(N_2) and air flows.The cyclization mechanism and stabilization behavior of polyacrylonitrile(PAN) were discussed.In N_2 flow,it was found that AM had the ability to initiate and accelerate cyclization process,which was confirmed by the fact that the initiation of nitriles shifted to a lower temperature.Compared to AN homopolymer,the initiation temperature of cyclization was ahead 32 K by introducing 3.59 mol%AM into the copolymer.The exothermic reaction was relaxed due to the presence of two separated exothermic peaks.Accompanied by DSC,in situ FTIR and calculation of activation energy,the two peaks were proved to be caused by ionic cyclization and free radical cyclization,respectively,and the corresponding cyclization mechanism was proposed.With increasing in AM content,the ionic cyclization tends to be dominant and the total heat liberated first increases and then decreases.For AN homopolymer,the activation energy of cyclization is 179 kJ/mol.For AN-AM copolymer(containing 3.59 mol%AM),the activation energy of ionic cyclization is 96 kJ/mol and that of free radical cyclization is 338 kJ/mol.In air flow,similar cyclization routes occur and the difference is the contribution of oxidation.The oxygen in environment has no remarkable effect on cyclization of AN homopolymer but retards the cyclization of AN-AM copolymers.For AN-AM copolymer with 3.59 mol%AM,the cyclization temperature is postponed 10℃in air.  相似文献   

17.
The composite of α-ZrP and fumed silica was prepared by dispersing predetermined molar ratios of polycrystalline α-ZrP in water.Admittance measurement of the samples was made in the frequence range from 5Hz to 1MHz and the temperature range from -20℃ to 20℃.The activation energy in conduction of the composites,with different molar fraction of α-ZrP,is about 5.9KJ/mol at 60% and 40% relative humidities.The results show that the charge transport mechanism was not changed after mixing fumed silica into α-ZrP and the charge transport medium is water in α-ZrP and the composites.  相似文献   

18.
Studies on the catalytic reaction mechanism of L-lactate dehydrogenase have been carried out by using quantum chemical ab initio calculation at HF/6-31G* level. It is found that the interconversion reaction of pyruvate to L-lactate is dominated by the hydride ion HR- transfer, and the transfers of the hydride ion HR and proton HR are a quasi-coupled process, in which the energy barrier of the transition state is about 168.37 kJ/mol. It is shown that the reactant complex is 87.61 kJ/mol lower, in energy, than the product complex. The most striking features in our calculated results are that pyridine ring of the model cofactor is a quasi-boat-like configuration in the transited state, which differs from a planar conformation in some previous semiempirical quantum chemical studies. On the other hand, the similarity in the structure and charge between the HR transfer process and the hydrogen bonding with lower barrier indicates that the HR transfer process occurs by means of an unusual manner. In addition,  相似文献   

19.
The intrinsic viscosity [ η], Huggins constant (KH), [ η]0, α3 and flow activation energy values of nylon 6 have been measured in water/m-cresol (0/100-20/80) systems at different temperatures (20-60℃). It has been found that the intrinsic viscosity, [η]0 and α3 increase with the increase in water contents in m-cresol up to 15% and then decrease. They increase with the increase in temperature irrespective of solvent composition. It has been noted that the percent increase of α3 is the highest at 60℃ and the lowest at 20℃ for a particular solvent system. The intrinsic viscosity data obey Arrhenius equation over the considered conditions. The activation energy and the KH values decrease very sharply with the addition of water,giving a minimum value at 15% of water and then increase slowly. The variation of all the parameters has been explained in terms of variation in thermodynamic quality of solvent with the addition of water to m-cresol and change in temperature,resulting in the change of conformational and orientational properties of polymer molecules. This change of solvent quality also results in variation of selective sorption of solvent over the polymer, such as hydrogen bonding, etc.  相似文献   

20.
Alkali metal hydroxide and hydride composite systems contain both protic(H bonded with O) and hydridic hydrogen. The interaction of these two types of hydrides produces hydrogen. The enthalpy of dehydrogenation increased with the increase of atomic number of alkali metals,i.e.,-23 kJ/molH2 for LiOH-LiH, 55.34 kJ/molH2 for NaOH-NaH and 222 kJ/molH2 for KOH-KH. These thermodynamic calculation results were consistent with our experimental results. H2 was released from LiOH-LiH system during ball milling. The dehydrogenation temperature of NaOH-NaH system was about 150℃; whereas KOH and KH did not interact with each other during the heating process. Instead, KH decomposed by itself. In these three systems, NaOH-NaH was the only reversible hydrogen storage system, the enthalpy of dehydrogenation was about 55.65 kJ/molH2, and the corresponding entropy was ca. 101.23 J/(molH2 K), so the temperature for releasing 1.0 bar H2 was as high as 518℃, showing unfavorable thermodynamic properties. The activation energy for hydrogen desorption of NaOH-NaH was found to be57.87 kJ/mol, showing good kinetic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号