首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The in vitro transfection activity of a novel series of N,N'-diacyl-1,2-diaminopropyl-3-carbamoyl-(aminoethane) derivatives was evaluated against a mouse melanoma cell line at different +/- charge ratios, in the presence and absence of helper lipids. Only the unsaturated derivative N,N'-dioleoyl-1,2-diaminopropyl-3-carbamoyl-(aminoethane), (1,2lmp[5]) mediated significant increase in the reporter gene level which was significantly boosted in the presence of DOPE peaking at +/- charge ratio of 2. The electrostatic interactions between the cationic liposomes and plasmid DNA were investigated by gel electrophoresis, fluorescence spectroscopy, dynamic light scattering and electrophoretic mobility techniques. In agreement with the transfection results, 1,2lmp[5]/DOPE formulation was most efficient in associating with and retarding DNA migration. The improved association between the dioleoyl derivative and DNA was further confirmed by ethidium bromide displacement assay and particle size distribution analysis of the lipoplexes. Differential scanning calorimetry studies showed that 1,2lmp[5] was the only lipid that exhibited a main phase transition below 37 degrees C. Likewise, 1,2lmp[5] was the only lipid found to form all liquid expanded monolayers at 23 degrees C. In conclusion, the current findings suggest that high in vitro transfection activity is mediated by cationic lipids characterized by increased acyl chain fluidity and high interfacial elasticity.  相似文献   

2.
In an effort to probe the importance of endosomal protonation in pH-sensitive, cationic, lipid-mediated, non-viral gene delivery, we have designed and synthesized a novel cholesterol-based, endosomal pH-sensitive, histidylated, cationic amphiphile (lipid 1), its less pH-sensitive counterpart with an electron-deficient, tosylated histidine head group (lipid 2) as well as a third new cholesterol-based, cationic lipid containing no histidine head group (lipid 3). For all the novel liposomes and lipoplexes, we evaluated hysicochemical characteristics, including lipid:DNA interactions, global surface charge, and sizes. As anticipated, lipid 2 showed lower efficacies than lipid 1 for the transfection of 293T7 cells with the cytoplasmic gene expression vector pT7Luc at lipid:DNA mole ratios of 3.6:1 and 1.8:1; both lipids were greatly inhibited in the presence of Bafilomycin A1. This demonstrates the involvement of imidazole ring protonation in the endosomal escape of DNA. Conversely, endosome escape of DNA with lipid 3 seemed to be independent of endosome acidification. However, with nuclear gene expression systems in 293T7, HepG2, and HeLa cells, the transfection efficacies of lipid 2 at a lipid:DNA mole ratio of 3.6:1 were found to be either equal to or somewhat lower than those of lipids 1 and 3. Interestingly, at a lipid:DNA mole ratio of 1.8:1, lipids 2 and 3 were remarkably more transfection efficient than lipid 1 in both HepG2 and HeLa cells. Mechanistic implications of such contrasting relative transfection profiles are delineated.  相似文献   

3.
Although detailed structure-activity, physicochemical and biophysical investigations in probing the anchor influence in liposomal gene delivery have been reported for glycerol-based transfection lipids, the corresponding investigation for non-glycerol based simple monocationic transfection lipids have not yet been undertaken. Towards this end, herein, we delineate our structure-activity and physicochemical approach in deciphering the anchor dependency in liposomal gene delivery using fifteen new structural analogues (lipids 1-15) of recently reported non-glycerol based monocationic transfection lipids. The C(14) analogues in both series 1 (lipids 1-6) and series 2 (lipids 7-15) showed maximum efficiency in transfecting COS-1 and CHO cells. However, the C(12) analogue of the ether series (lipid 3) exhibited a seemingly anomalous behavior compared with its transfection efficient C(10) and C(14) analogues (lipids 2 and 4) in being completely inefficient to transfect both COS-1 and CHO cells. The present structure-activity investigation also convincingly demonstrates that enhancement of transfection efficiencies through incorporation of membrane reorganizing unsaturation elements in the hydrophobic anchor of cationic lipids is not universal but cell dependent. The strength of the interaction of lipids 1-15 with DNA was assessed by their ability to exclude ethidium bromide bound to the DNA. Cationic lipids with long hydrophobic tails were found, in general, to be efficient in excluding EtBr from DNA. Gel to liquid crystalline transition temperatures of the lipids was measured by fluorescence anisotropy measurement technique. In general (lipid 2 being an exception), transfection efficient lipids were found to have their mid transition temperatures at or below physiological temperatures (37 degrees C).  相似文献   

4.
We have synthesized five new cholesterol based gemini cationic lipids possessing hydroxyethyl (-CH(2)CH(2)OH) function on each head group, which differ in the length of the polymethylene spacer chain. These gemini lipids are important for gene delivery processes as they possess pre-optimized molecular features, e.g., cholesterol backbone, ether linkage and a variable spacer chain between both the headgroups of the gemini lipids. Cationic liposomes were prepared from each of these lipids individually and as a mixture of individual cationic gemini lipid and 1,2-dioleoyl phosphatidylethanolamine (DOPE). Each gemini lipid based formulation induced better transfection activity than that of their monomeric counterpart. One such gemini lipid with a -(CH(2))(12)- spacer, HG-12, showed dramatic increase in the mean fluorescence intensity due to the expression of green-fluorescence protein (GFP) in the presence of 10% FBS compared to the conditions where there was no serum. Other gemini lipids retained their gene transfection efficiency without any marked decrease in the presence of serum. The only exception was seen with the gemini with a -(CH(2))(3)- spacer, HG-3, which on gene transfection in the presence of 10% FBS lost ~70% of its transfection efficiency. Overall the gemini lipid with a -(CH(2))(5)- spacer, HG-5, showed the highest transfection activity at N/P (lipid/DNA) ratio of 0.5 and lipid : DOPE molar ratio of 2. Upon comparison of the relevant parameters, e.g., %-transfected cells, the amount of DNA transfected to each cell and %-cell viability all together against Lipofectamine 2000, one of the best commercial transfecting agents, the optimized lipid formulation based on DOPE/HG-5 was found to be comparable. In terms of its ability to induce gene-transfer in the presence of serum and shelf-life DOPE/HG-5 liposome was found to be superior to its commercial counterpart. Confocal imaging analysis confirmed that in the presence of 10% serum using a Lipid : DOPE of 1 : 4 and N/P charge ratio of 0.75 with 1.2 μg DNA per well, HG-5 is better than Lipofectamine 2000.  相似文献   

5.
A number of prior studies have demonstrated that the DNA-binding and gene transfection efficacies of cationic amphiphiles crucially depend on their various structural parameters including hydrophobic chain lengths, headgroup functionalities, and the nature of the linker-functionality used in tethering the polar headgroup and hydrophobic tails. However, to date addressing the issue of linker orientation remains unexplored in liposomal gene delivery. Toward probing the influence of linker orientation in cationic lipid mediated gene delivery, we have designed and synthesized two structurally isomeric remarkably similar cationic amphiphiles 1 and 2 bearing the same hydrophobic tails and the same polar headgroups connected by the same ester linker group. The only structural difference between the cationic amphiphiles 1 and 2 is the orientation of their linker ester functionality. While lipid 1 showed high gene transfer efficacies in multiple cultured animal cells, lipid 2 was essentially transfection incompetent. Findings in both transmission electron microscopic and dynamic laser light scattering studies revealed no significant size difference between the lipoplexes of lipids 1 and 2. Findings in confocal microscopic and fluorescence resonance energy transfer (FRET) experiments, taken together, support the notion that the remarkably higher gene transfer efficacies of lipid 1 compared to those of lipid 2 presumably originate from higher biomembrane fusogenicity of lipid 1 liposomes. Differential scanning calorimetry (DSC) and fluorescence anisotropy studies revealed a significantly higher gel-to-liquid crystalline temperature for the lipid 2 liposomes than that for lipid 1 liposomes. Findings in the dye entrapment experiment were also consistent with the higher rigidity of lipid 2/cholesterol (1:1 mole ratio) liposomes. Thus, the higher biomembrane fusibility of lipid 1 liposomes than that of lipid 2 liposomes presumably originates from the more rigid nature of lipid 2 cationic liposomes. Taken together, the present findings demonstrate for the first time that even as minor a structural variation as linker orientation reversal in cationic amphiphiles can profoundly influence DNA-binding characteristics, membrane rigidity, membrane fusibility, cellular uptake, and consequently gene delivery efficacies of cationic liposomes.  相似文献   

6.
The physicochemical properties and transfection efficacies of two samples of a cationic lipid have been investigated and compared in 2D (monolayers at the air/liquid interface) and 3D (aqueous bulk dispersions) model systems using different techniques. The samples differ only in their chain composition due to the purity of the oleylamine (chain precursor). Lipid 8 (using the oleylamine of technical grade for cost-efficient synthesis) shows lateral phase separation in the Langmuir layers. However, the amount of attached DNA, determined by IRRAS, is for both samples the same. In 3D systems, lipid 8 p forms cubic phases, which disappear after addition of DNA. At physiological temperatures, both lipids (alone and in mixture with cholesterol) assemble to lamellar aggregates and exhibit comparable DNA delivery efficiency. This study demonstrates that non-lamellar structures are not compulsory for high transfection rates. The results legitimate the utilization of oleyl chains of technical grade in the synthesis of cationic transfection lipids.  相似文献   

7.
A convergent synthesis of cationic amphiphilic compounds is reported here with the use of the phosphonodithioester–amine coupling (PAC) reaction. This versatile reaction occurs at room temperature without any catalyst, allowing binding of the lipid moiety to a polar head group. This strategy is illustrated with the use of two lipid units featuring either two oleyl chains or two-branched saturated lipid chains. The final cationic amphiphiles were evaluated as carriers for plasmid DNA delivery in four cell lines (A549, Calu3, CFBE and 16HBE) and were compared to standards (BSV36 and KLN47). These new amphiphilic derivatives, which were formulated with DOPE or DOPE-cholesterol as helper lipids, feature high transfection efficacies when associated with DOPE. The highest transfection efficacies were observed in the four cell lines at low charge ratios (CR = 0.7, 1 or 2). At these CRs, no toxic effects were detected. Altogether, this new synthesis scheme using the PAC reaction opens up new possibilities for investigating the effects of lipid or polar head groups on transfection efficacies.  相似文献   

8.
The success of nucleic acid delivery requires the development of safe and efficient delivery vectors that overcome cellular barriers for effective transport. Herein we describe the synthesis of a series of novel, single-chain rigid cationic carotenoid lipids and a study of their preliminary in vitro siRNA delivery effectiveness and cellular toxicity. The efficiency of siRNA delivery by the single-chain lipid series was compared with that of known cationic lipid vectors, 3β-[N-(N',N'-dimethylaminoethane)carbamoyl]-cholesterol (DC-Chol) and 1,2-dimyristoyl-sn-glyceryl-3-phosphoethanolamine (EPC) as positive controls. All cationic lipids (controls and single-chain lipids) were co-formulated into liposomes with the neutral co-lipid, 1,2-dioleolyl-sn-glycerol-3-phosphoethanolamine (DOPE). Cationic lipid-siRNA complexes of varying (+/-) molar charge ratios were formulated for delivery into HR5-CL11 cells. Of the five single-chain carotenoid lipids investigated, lipids 1, 2, 3 and 5 displayed significant knockdown efficiency with HR5-CL11 cells. In addition, lipid 1 exhibited the lowest levels of cytotoxicity with cell viability greater than 80% at all (+/-) molar charge ratios studied. This novel, single-chain rigid carotenoid-based cationic lipid represents a new class of transfection vector with excellent cell tolerance, accompanied with encouraging siRNA delivery efficiency.  相似文献   

9.
Chikungunya is an infectious disease caused by mosquito-transmitted chikungunya virus (CHIKV). It was reported that NS1 and E2 siRNAs administration demonstrated CHIKV inhibition in in vitro as well as in vivo systems. Cationic lipids are promising for designing safe non-viral vectors and are beneficial in treating chikungunya. In this study, nanodelivery systems (hybrid polymeric/solid lipid nanoparticles) using cationic lipids (stearylamine, C9 lipid, and dioctadecylamine) and polymers (branched PEI-g-PEG -PEG) were prepared, characterized, and complexed with siRNA. The four developed delivery systems (F1, F2, F3, and F4) were assessed for stability and potential toxicities against CHIKV. In comparison to the other nanodelivery systems, F4 containing stearylamine (Octadecylamine; ODA), with an induced optimum cationic charge of 45.7 mV in the range of 152.1 nm, allowed maximum siRNA complexation, better stability, and higher transfection, with strong inhibition against the E2 and NS1 genes of CHIKV. The study concludes that cationic lipid-like ODA with ease of synthesis and characterization showed maximum complexation by structural condensation of siRNA owing to high transfection alone. Synergistic inhibition of CHIKV along with siRNA was demonstrated in both in vitro and in vivo models. Therefore, ODA-based cationic lipid nanoparticles can be explored as safe, potent, and efficient nonviral vectors overcoming siRNA in vivo complexities against chikungunya.  相似文献   

10.
The physicochemical properties of a novel series of symmetric 1,3-dialkylamidopropane-based cationic amphiphiles [M. Sheikh, J. Feig, B. Gee, S. Li, M. Savva, In vitro lipofection with novel series of symmetric 1,3-dialkoylamidopropane-based cationic surfactants containing single primary and tertiary amine polar head groups, Chem. Phys. Lipids 124 (2003) 49-61] were studied by several techniques, in an effort to correlate cationic lipid structure with transfection efficacy. It was found that only the unsubstituted amine and tertiary amine dioleoyl derivatives 1,3lmp5 and 1,3lmt5, respectively, mediated in vitro transfection activity in the absence of helper lipids. This activity pattern was consistent with ethidium bromide fluorescence quenching studies, which indicated that only these two derivatives bound to and efficiently condense plasmid DNA at physiological pH. Dynamic light scattering indicated that lipoplexes made by these two cationic lipids were relatively small particles below 1 microm, in sharp contrast to lipoplexes bigger than 3 microm composed of saturated cationic derivatives. Transmission electron microscopy studies clearly indicated that cationic lipid dispersions made by saturated derivatives form multilamellar tubules at physiological pH. Calorimetric studies showed that cationic amphiphiles with saturated acyl chains longer than 12 carbons exhibit solid-to-liquid crystalline phase transitions above 37 degrees C. In agreement with the microscopy and calorimetry studies, Langmuir film balance experiments indicated that saturated derivatives with hydrophobic chains longer that 12 carbons are not well hydrated and exist at a chain-ordered state at ambient temperature. Calculation of compressibility moduli from monolayer compression isotherms at 23 degrees C suggested that monolayers made by cationic lipids bearing saturated acyl chains are less compressible relative to those of the dioleoyl derivatives 1,3lmp5 and 1,3lmt5. In conclusion, high hydration, increased fluidity and high elasticity of cationic lipid assemblies in isolation, all correlate with high in vitro transfection activity.  相似文献   

11.
Developing safe and efficient delivery systems for therapeutic biomacromolecules is a long-standing challenge. Herein, we report a newly developed combinatorial library of cholesteryl-based disulfide bond-containing biodegradable cationic lipidoid nanoparticles. We have identified a subset of this library which is effective for protein and mRNA delivery in vitro and in vivo. These lipidoids showed comparable transfection efficacies but much lower cytotoxicities compared to the Lpf2k in vitro. In vivo studies in adult mice demonstrated the successful delivery of genome engineering protein and mRNA molecules in the skeletal muscle (via intramuscular injection), lung and spleen (via intravenous injection), and brain (via lateral ventricle infusion).  相似文献   

12.
Developing safe and efficient delivery systems for therapeutic biomacromolecules is a long‐standing challenge. Herein, we report a newly developed combinatorial library of cholesteryl‐based disulfide bond‐containing biodegradable cationic lipidoid nanoparticles. We have identified a subset of this library which is effective for protein and mRNA delivery in vitro and in vivo. These lipidoids showed comparable transfection efficacies but much lower cytotoxicities compared to the Lpf2k in vitro. In vivo studies in adult mice demonstrated the successful delivery of genome engineering protein and mRNA molecules in the skeletal muscle (via intramuscular injection), lung and spleen (via intravenous injection), and brain (via lateral ventricle infusion).  相似文献   

13.
Two C-lactosyl lipids and the related C-galactosyl lipids have been synthesised and their binding to RCA120 plant lectin was compared with a second series of thiolactosylethoxyalkanes. The interactions were measured quantitatively in real time by surface plasmon resonance (BIAcore) at a range of concentrations and temperatures from 5 to 30 degrees C. The C-galactosyl lipid (1,3-dimethyl-5-[beta-D-galactopyranosyl]-5-(4-octadecyloxybenzyl)pyrimidine-2,4,6-trione) bound much more weakly with a K(A) = 8.86 x 10(5) than the corresponding C-lactosyl lipid (1,3-dimethyl-5-[beta-D-galactopyranosyl-(1 --> 4)-beta-D-glucopyranosyl]-5-(4-octadecyloxybenzyl)pyrimidine-2,4,6-trione) (K(A) = 2.31 x 10(7)). The influence of the linker region of the two different series of lactosyl lipids was clearly demonstrated by the differences in the binding to RCA120 lectin. The changes in kinetic values and in the enthalpic and entropic contribution to the free energy of binding reflected the importance of the linker and the hydrocarbon anchor holding the synthetic glycolipids in the neomembrane.  相似文献   

14.
Improved strategies for the chemical conversion of natural polymyxin B and colistin to their N-terminal analogs are reported. First, the protection of the side chains of five L-alpha,gamma-diaminobutyric acid (Dab) residues in natural polymyxin B and colistin was achieved with trichloroethoxycarbonyl (Troc), then the resulting pentakis(N gamma-Troc)-polymyxin B and pentakis(N gamma)Troc)-colistin were treated with trifluoroacetic acid (TFA) : methanesulfonic acid (MSA) : dimethylformamide (DMF) : H2O (10 : 30 : 55 : 5) at 40 degrees C in order to remove N alpha-alkanoyl-Dab(Troc)-OH selectively. The new key compounds, tetrakis(N gamma-Troc)-polymyxin B (2-10) and tetrakis(N gamma-Troc)-colistin (2-10), were obtained in 19% and 15% yields, respectively, which is higher than previous reports using trifluoroacetyl (Tfa) for tetrakis(N gamma-Tfa)-polymyxin B (2-10) and tetrakis(N gamma-Tfa)-colistin (2-10), respectively. Acylation of tetrakis(N gamma-Troc)-polymyxin B (2-10) and tetrakis(N gamma-Troc)-colistin (2-10) with various hydrophobic acids bearing aliphatic or aromatic ring structures, followed by the deprotection of Troc by Zn in AcOH, produced polymyxin B (2-10) and colistin (2-10) analogs which were used for structure-activity relationship studies. It was found that cyclohexylbutanoyl-, 4-biphenylacetyl-, and 1-adamantaneacetyl-polymyxin B (2-10) showed potent antimicrobial activity equal to that of polymyxin B against three Gram-negative bacterial strains. The lipopolysacharide (LPS) binding activity of cyclohexylbutanoyl-, 4-biphenylacetyl-, and cyclododecanecarbonyl-polymyxin B (2-10) increased greatly in comparison with that of polymyxin B (2-10). The various N alpha-acylated polymyxin B (2-10) analogs showed slightly higher antimicrobial and LPS binding activities than the corresponding N alpha-acylated colistin (2-10) analogs.  相似文献   

15.
16.
A variety of benzylidenethiazole analogs have been demonstrated to inhibit 5-lipoxygenase (5-LOX). Here we report the anti-atherogenic potential of 5-(4-hydroxy- 2,3,5-trimethylbenzylidene) thiazolidin-2,4-dione (HMB-TZD), a benzylidenethiazole analog, and its potential mechanism of action in LDL receptor-deficient (Ldlr-/-) mice. HMB-TZD Treatment reduced leukotriene B4 (LTB4) production significantly in RAW264.7 macrophages and SVEC4-10 endothelial cells. Macrophages or endothelial cells pre-incubated with HMB-TZD for 2 h and then stimulated with lipopolysaccharide or tumor necrosis factor-alpha (TNF-α) displayed reduced cytokine production. Also, HMB-TZD reduced cell migration and adhesion in accordance with decreased proinflammatory molecule production in vitro and ex vivo. HMB-TZD treatment of 8-week-old male Ldlr-/- mice resulted in significantly reduced atherosclerotic lesions without a change to plasma lipid profiles. Moreover, aortic expression of pro-atherogenic molecules involved in the recruitment of monocytes to the aortic wall, including TNF-α , MCP-1, and VCAM-1, was downregulated. HMB-TZD also reduced macrophage infiltration into atherosclerotic lesions. In conclusion, HMB-TZD ameliorates atherosclerotic lesion formation possibly by reducing the expression of proinflammatory molecules and monocyte/macrophage recruitment to the lesion. These results suggest that HMB-TZD, and benzylidenethiazole analogs in general, may have therapeutic potential as treatments for atherosclerosis.  相似文献   

17.
5-Aminolevulinic acid and its esterified analogues have been under much investigation to enhance the endogenous production of protoporphyrin IX (PpIX) in tumor cells. However, in this work, we studied the in vitro and in vivo efficacy of exogenously administered PpIX and its esterified analogue, PpIX dimethyl ester (PME), in poorly differentiated human nasopharyngeal carcinoma (NPC/CNE-2) as a photodynamic diagnostic (PDD) agent. NPC/CNE-2 at its earliest time, 1 h after incubation with PME in in vitro studies, has exhibited 64% (P <0.01) higher tumor to normal cell (T/N) fluorescence ratio than with PpIX. In an in vivo mouse xenograft model, comparable photosensitizer concentration in tumor after intravenous administration was observed at 1-3 h time points, but at 9 h, PME had 31% (P=0.05) greater concentration in tumor compared with PpIX. In addition, by constituting PME and PpIX in different topical gel composites, of which, PME gel composition of 8:2 Plasdone and Gantrez resulted in the highest T/N ratio at 6 h after application (34%; P <0.05) in comparison with other gel composites. Evaluation of PME and PpIX constituted in the delivery vehicles investigated showed comparable selectivity for tumor at 1-3 h, thus neither photosensitizer is more efficient than the other for PDD at the early time points; however, beyond 6 h, PME had higher selectivity for tumor compared with PpIX. Thus, further investigation is warranted to improve the drug delivery vehicle for greater tumor selectivity at a shorter incubation time.  相似文献   

18.
Cationic amphiphilic peptides stimulate secretion via a receptor-independent action upon G proteins. We have previously utilized chimeric analogs of mastoparan (MP), including galparan (galanin(1-13)-MP ), as molecular probes of secretion. Here, we further resolve the structure-activity relationship of peptidyl secretagogs, including rationally designed chimeric MP analogs. The secretory efficacies of 10 MP analogs were significantly higher than 45 unrelated basic peptides. Comparative studies identified MP analogs that are differential secretagogs for 5-hydroxytryptamine (5-HT) and beta-hexosaminidase. Peptide-induced activation of phospholipase D (PLD), an enzyme intimately involved in regulated exocytosis [5], correlated with the secretion of beta-hexosaminidase but not 5-HT. Thus, these data indicate that different mechanisms are responsible for the exocytosis of 5-HT and beta-hexosaminidase, respectively. Moreover, mastoparan analogs are novel tools for probing the molecular details of exocytosis and other biological phenomena.  相似文献   

19.
To study the structure-activity relationships of neuromedin U-8 (NMU-8) (H-Tyr-Phe-Leu-Phe-Arg-Pro-Arg-Asn-NH2) and to develop a NMU-8 antagonist, twenty-three NMU-8 analogs substituted with Gly or the corresponding D-amino acid(s) at positions 1-8 were synthesized by solid-phase techniques. On isolated chicken crop preparations, the contractile activity of the synthetic NMU-8 analogs was compared with that of NMU-8 and their antagonistic activity was assayed against NMU-8. The replacement of Phe2, Phe4, Arg5, Pro6, Arg7 or Asn8 with Gly brought about a drastic decrease of the agonistic activities. Substitution of the corresponding D-amino acid residue for Phe2, Phe4, Arg5, Pro6 or Asn8 caused a marked decrease of the agonistic activities, while the replacement of Tyr1 with D-form enhanced the activity. It was further revealed that [D-Pro6]-NMU-8 and [D-Leu3, D-Pro6]-NMU-8 exerted a non-competitive antagonistic activity against NMU-8 with x values of 5.22 +/- 0.12 and 5.34 +/- 0.09, respectively. [D-Phe2, D-Pro6]-NMU-8, [D-Arg5, D-Pro6]-NMU-8 and [D-Pro6, D-Asn8]-NMU-8 showed a very weak antagonism. The results indicated that 1) the side chain of each amino acid at positions 2, 4, 5, 6, 7 and 8 of NMU-8 is of relative importance for the expression of the contractile activity, and 2) [D-Pro6]-NMU-8 and its four analogs acted as an antagonist against NMU-8.  相似文献   

20.
We have studied the phase behavior of binary mixtures of long- and short-chain lipids, namely, dimyristoyl phosphatidylcholine (DMPC) and dihexanoyl phosphatidylcholine (DHPC), using optical microscopy and small-angle neutron scattering. Samples with a total lipid content of 25 wt %, corresponding to ratios Q ([DMPC]/[DHPC]) of 5, 3.2, and 2, are found to exhibit an isotropic (I) --> chiral nematic (N) --> lamellar phase sequence on increasing temperature. The I-N transition coincides with the chain melting transition of DMPC at Q = 5 and 3.2, but the N phase forms at a higher temperature for Q = 2. All three samples form multilamellar vesicles in the lamellar phase. Our results show that disklike "bicellar" aggregates occur only in the lower temperature isotropic phase and not in the higher temperature magnetically alignable N phase, where they were previously believed to exist. The N phase is found to consist of long, flexible wormlike micelles, their entanglement resulting in the very high viscosity of this phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号