首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The Pt/Al2O3, Sn/Al2O3catalysts were prepared by the single sol-gel method. The two-stage Sn/Al2O3and Pt/Al2O3catalyst in series for NO reduction with propene were investigated. The coexistance of water vapor enhanced the activity at medium temperature of 300-400oC, and the NO conversion was above 50% at 225 to 500oC even in the presence of water vapor and SO2. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
An experimental study on the conversion of NO in the NO/N2, NO/O2/N2, NO/C2H4/N2 and NO/C2H4/O2/N2 systems has been carried out using dielectric barrier discharge (DBD) plasmas at atmospheric pressure. In the NO/N2 system, NO decomposition to N2 and O2 is the dominating reaction; NO conversion to NO2 is less significant. O2 produced from NO decomposition was detected by an on-line mass spectrometer. With the increase of NO initial concentration, the concentration of O2 produced decreases at 298 K, but slightly increases at 523 K. In the NO/O2/N2 system, NO is mainly oxidized to NO2, but NO conversion becomes very low at 523 K and over 1.6% of O2. In the NO/C2H4/N2 system, NO is reduced to N2 with about the same NO conversion as that in the NO/N2 system but without NO2 formation. In the NO/C2H4/O2/N2 system, the oxidation of NO to NO2 is dramatically promoted. At 523 K, with the increase of the energy density, NO conversion increases rapidly first, and then almost stabilizes at 93–91% of NO conversion with 61–55% of NO2 selectivity in the energy density range of 317–550 J L−1. It finally decreases gradually at high energy density. A negligible amount of N2O is formed in the above four systems. Of the four systems studied, NO conversion and NO2 selectivity of the NO/C2H4/O2/N2 system are the highest, and NO/O2/C2H4/N2 system has the lowest electrical energy consumption per NO molecule converted.  相似文献   

3.
Selective catalytic reduction of nitrogen monoxide (NO) over a catalyst of mechanically mixed Nb/TiO2 and Mn2O3 (Mn2O3+Nb/TiO2) in an oxidizing atmosphere with propene (C3H6) was studied. The Mn2O3+Nb/TiO2 catalyst showed high activity for the reduction of NO to N2. The maximum conversion of NO to N2 was observed at 200∼300°C, with about 80% reduction of NO to N2. Mn2O3 enhanced the formation of NO2 from NO and the activation of propene to react with NO2 for reduction to N2.  相似文献   

4.
The NO catalytic direct decomposition was studied over La2CuO4 nanofibers, which were synthesized by using single walled carbon nanotubes (CNTs) as templates under hydrothermal condition. The composition and BET specific surface area of the La2CuO4 nanofiber were La2Cu0.882+Cu0.12+O3.94 and 105.0 m2/g, respectively. 100% NO conversion (turnover frequency-(TOF): 0.17 gNO/gcatalyst s) was obtained over such nanofiber catalyst at temperatures above 300 °C with the products being only N2 and O2. In 60 h on stream testing, either at 300 °C or at 800 °C, the nanofiber catalyst still showed high NO conversion efficiency (at 300 °C, 98%, TOF: 0.17 gNO/gcatalyst s; at 800 °C, 96%, TOF: 0.16 gNO/gcatalyst s). The O2 and NO temperature programmed desorption (TPD) results indicated that the desorption of oxygen over the nanofibers occurred at 80-190 and 720-900 °C; while NO desorption happened at temperatures of 210-330 °C. NO and O2 did not competitively adsorb on the nanofiber catalyst. For outstanding the advantage of the nanostate catalyst, the usual La2CuO4 bulk powder was also prepared and studied for comparison.  相似文献   

5.
采用将Al(NO3)3、La(NO3)3和ZrOCl2的混合液滴入沉淀剂(NH4)2CO3中的共沉淀法制备La2O3-ZrO2-Al2O3复合载体,然后负载上Cu2+,制成Cu/La2O3-ZrO2-Al2O3催化剂。考察了该催化剂在富氧条件下对C3H6选择还原NO的催化性能,并借助扫描电子显微镜(SEM)、X射线衍射(XRD)、比表面积测定(BET)、吡啶吸附红外光谱(Py-IR)、程序升温还原(TPR)和热重分析(TG)等方法研究催化剂制备方法与结构、性能的关系。实验结果表明,采用将Al(NO3)3滴入(NH4)2CO3制得的γ-Al2O3能有效地增大催化剂的比表面积,加入La2O3能提高催化剂的热稳定性,加入ZrO2能大幅度增加催化剂表面L酸和B酸的酸量。因此,采用共沉淀法制备的La2O3-ZrO2-Al2O3复合载体能够使Cu/La2O3-ZrO2-Al2O3催化剂具有良好的催化性能,最佳催化活性温度为300℃,NO最大转化率高达88.9%,在有10%水蒸气存在的情况下,仍可达81.9%。  相似文献   

6.
Summary The effect of La2O3 and TiO2 on product selectivity, methane conversion and coke formation over NiO/MgO/ α -Al2O3 catalyst were studied in a simultaneous steam and CO2 reforming of methane to syngas. La2O3 and TiO2 were added to the catalyst via incipient wetness impregnation and bulk precipitation techniques and catalyst activity was tested in a fixed bed quartz reactor. Results reveal that although the addition of these oxides has no effect on the product selectivity and methane conversion, but can reduce coke formation on the surface of the catalysts as it can enhance the mobility of lattice oxygen anions. The results further show that the catalysts prepared by bulk precipitation technique decrease the coke formation more effectively.  相似文献   

7.
A series of Au/Fe2O3/Al2O3 catalysts were prepared by the homogeneous deposition-precipitation method. The catalytic activity of the catalyst samples for selective catalytic reduction of NO by propene under oxygen-rich atmosphere was evaluated. The results showed that 2%Au/10%Fe2O3/Al2O3 exhibited good low-temperature activity. The maximum of NO conversion reached 43% at 300 °C, while it was only 21% over the 2%Au/Al2O3 catalyst at the same temperature. The addition of 2% steam to the feed gas had little effect on the catalytic activity. X-ray diffraction results indicated that both Au and Fe2O3 particles were highly dispersed over Al2O3. H2-temperature-programmed reduction results indicated that there was strong interaction between Au and Fe2O3, which made the reduction of Fe2O3 easy. The synergistic effect between Au and Fe2O3 was probably responsible for the good catalytic performance of the Au/Fe2O3/Al2O3 catalyst at low temperature.  相似文献   

8.
Tao Lin  Wei Li  Maochu Gong  Yao Yu  Bo Du  Yaoqiang Chen   《Acta Physico》2007,23(12):1851-1856
TiO2,ZrO2-TiO2,andZrO2-TiO2-CeO2 were prepared by co-precipitation method and characterized by X-ray diffraction (XRD), specific surface area measurements (BET), temperature programmed desorption (NH3-TPD), oxygen storage capacity (OSC), and temperature programmed reduction (H2-TPR). The results showed that ZrO2-TiO2-CeO2 exhibited large number of surface strong acid, possessed some oxygen storage capacity, and strong redox property. The three materials were used as supports and the monolith catalysts were prepared with 1% (w) V2O5 and 9% (w)WO3 for selective catalytic reduction (SCR) of NO with ammonia in the presence of excessive O2, and the results of catalytic activity showed that the catalyst used ZrO2-TiO2-CeO2 as support yielded nearly 100% NO conversion at 275 °C at a gas hourly space velocity (GHSV) of 10000 h−1, and it had the best catalytic activity and showed great potential for practical application.  相似文献   

9.
用沉积沉淀法合成两种不同系列的CeO2-ZrO2-La2O3混合氧化物(ZrO2和La2O3沉积CeO2粒子(标记为A-x)以及CeO2和La2O3沉积ZrO2粒子(标记为B-x)),并用作Rh催化剂的载体。XRD、拉曼、TPR、XPS和O2脉冲等表征结果显示出不同的沉积顺序将导致不同的结构和氧化还原性能,且B-x具有更高的氧迁移性、储氧能力和表面Ce浓度。当其负载Rh后,Rh/B-x催化剂具有更高的NO和CO转化率及N2选择性,且Ce的最佳含量为50at%。这可能归因于Rh负载于富铈表面形成更多有利于NO分解的表面Ce3+活性位。  相似文献   

10.
以天然凹凸棒(ATP)为载体,分别利用机械混合法、浸渍法和溶胶-凝胶法制备了3种铁基复合载氧体。利用X射线衍射(XRD)、能谱(EDS)、N2-吸附脱附等温线等对其进行物化表征,并在900 ℃流化床中考察其煤化学链燃烧反应性能。结果表明,ATP能显著增加载氧体比表面积和抗磨损能力,并对煤转化过程有催化作用,其与Fe2O3的协同作用使初始碳转化速率显著提高。溶胶-凝胶法制备的U-Fe4ATP6表面Ca元素含量为4.3%,比表面积为4.920 7 m2/g,均高于其他两种载氧体,表现出更高的催化性能和反应活性:初始碳转化速率为0.168 min-1,平均CO2浓度为98.6%,燃烧效率为98.7%。20次反应后,U-Fe4ATP6催化性能略有降低,对应的初始碳转化速率降至0.108 min-1,停留时间t95延长到18 min;且能维持较高的反应活性,对应的CO2捕集效率和燃烧效率分别稳定在98.6%和96.7%。  相似文献   

11.
以浸渍在不同晶相TiO2 (金红石型(R)、锐钛矿型(A)和P25型(P))上的锰基催化剂为对象,研究了TiO2晶相对MnOx/TiO2催化剂催化NO氧化活性的影响。 结果表明,MnOx/TiO2(P)催化剂活性最高,NO转化率在300℃及GHSV = 20000 h-1条件下可达83%。 各催化剂活性顺序为MnOx/TiO2(P)>MnOx/TiO2(A)>MnOx/TiO2(R)。采用X射线粉末衍射、场发射扫描电子显微镜、X射线光电子能谱、H2程序升温还原和O2程序升温脱附等手段研究了TiO2晶相影响MnOx/TiO2催化剂催化活性的作用机理。结果表明,相比于A和R型TiO2,P型TiO2能够增加MnOx在其表面的分散度并抑制催化剂颗粒的团聚和粘连,且更有利于Mn2O3的生成,而后者催化NO氧化活性比其它MnOx更高;此外,P型TiO2可以增加MnOx尤其是Mn2O3的还原性,并可促进O2-从M3+-O键的脱附。  相似文献   

12.
The role of Al2O3-ZrO2 and Al2O3-TiO2 sol-gel prepared supports in the activity of platinum for the NO reduction by CO under oxidizing conditions has been studied. 27Al MAS-NMR spectra have shown the formation of pentacoordinate AlV in alumina-zirconia support. ZrO2 or TiO2 crystalline phases cannot be identified by XRD diffraction, suggesting the formation of nanosized structures supported on alumina. When the reaction was carried out in presence of oxygen, large amounts of NO2 were observed on Pt/Al2O3-ZrO2catalyst, while the formation of N2O is more prononced on Pt/Al2O3-TiO2 catalyst. The effect of water during NO reduction is discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
In the present paper, the catalytic dehydrogenation of C2H6 to C2H4 under non-oxidative conditions was investigated in a fixed-bed micro-reactor under ambient pressure at 823 - 923 K. The 6Cr/g-Al2O3 catalyst was found to be the best catalyst among the g-Al2O3, SiO2, MCM41, MgO and Si-2 supported chromium oxide catalysts. The features of the 6Cr/g-Al2O3 catalyst for the reaction could be listed as follows: (1) At 823 - 923 K, the C2H4 selectivity of 92.5-78.6% at a C2H6 conversion of 9.5-29.8% could be obtained. (2) The catalyst had the good regeneration performance, i.e., could be regenerated by air repeatedly. (3) The main products were C2H4, CH4, H2 and coke. No carbon oxides were identified.  相似文献   

14.
In this work, we studied the catalytic activity of LaMnO3 and (La0.8A0.2)MnO3 (A = Sr, K) perovskite catalysts for oxidation of NO and C10H22 and selective reduction of NO by C10H22. The catalytic performances of these perovskites were compared with that of a 2 wt% Pt/SiO2 catalyst. The La site substitution increased the catalytic properties for NO or C10H22 oxidation compared with the non-substituted LaMnO3 sample. For the most efficient perovskite catalyst, (La0.8Sr0.2)MnO3, the results showed the presence of two temperature domains for NO adsorption: (1) a domain corresponding to weakly adsorbed NO, desorbing at temperatures lower than 270 ℃ and (2) a second domain corresponding to NO adsorbed on the surface as nitrate species, desorbing at temperatures higher than 330 ℃. For the Sr-substituted perovskite, the maximum NO2 yield of 80% was observed in the intermediate temperature domain (around 285 ℃). In the reactant mixture of NO/C10H22/O2/H2O/He, (La0.8Sr0.2)MnO3 perovskite showed better performance than the 2 wt% Pt/SiO2 catalyst: NO2 yields reaching 50% and 36% at 290 and 370 ℃, respectively. This activity improvement was found to be because of atomic scale interactions between the A and B active sites, Sr2+ cation and Mn4+/Mn3+ redox couple. Thus, (La0.8Sr0.2)MnO3 perovskite could be an alternative free noble metal catalyst for exhaust gas after treatment.  相似文献   

15.
采用吸附法制备了组合型Pt3Sn/Al2O3双金属催化剂, 将该催化剂用于芳香硝基化合物原位液相加氢一锅法合成N-烷基芳胺. 研究表明, 在503 K, 空速为7.5 h-1, 水体积分数为5%时, 1%(质量分数)Pt3Sn/Al2O3催化剂具有较高的催化性能, 硝基苯的转化率为100%, N-乙基苯胺和N,N-二乙基苯胺的总选择性为98.2%. 同时,该催化剂对原位液相加氢烷基化反应具有一定普适性, 本文研究的14 种芳香硝基化合物与低级脂肪醇反应,均具有较高的N-烷基化产率.  相似文献   

16.
An infrared spectroscopic study of the diatomic molecules O2, N2, NO and H2 adsorbed under different conditions on Fe2O3 has been performed.Complex patterns of absorption on both α-Fe2O3 and γ-Fe2O3 activated in O2 at high temperature are assigned to vibrations of two different chemisorbed O2 species.N2 molecules do not interact with “oxygen rich” α-Fe2O3 surfaces, but give N2O? and N2O22? species when chemisorbed on evacuated surfaces.NO molecules give complex patterns of absorption, depending on the gas pressure. Three different types of nitrate structures can be identified, as well as NO, NO? and cis-N2O2 chemisorbed species. Chemisorbed water molecules are formed by contact of H2 with Fe2O3 surfaces even at room temperature.  相似文献   

17.
The reactions of CH3O2 with SO2 and NO have been studied by steady state photolysis of azomethane in the presence of O2SO2→NO mixtures at 296 K and 1 atm total pressure. The quantum yield of NO oxidation by CH3O2 radicals is increased substantially when SO2 is added to the system indicating an SO2 induced chain oxidation of NO. The rate law gives k1/k2 = (2.5 ± 0.5) × 10?3 for CH3O2 + SO2 → CH3O2SO2 (1), CH3O2 + NO → CH3O + NO2 (2). Combining this ratio with the absolute value of k1 = 8.2 × 10?15 cm3 s?1 gives k2 = 10?11.5 ± 02 cm3 s?1.  相似文献   

18.
We present a comparative study of NiWO4, NiO, and WO3 catalysts for simultaneous conversion of NO and CO. Samples were synthesized by reacting ammonium metatungstate and/or nickel nitrate at high temperature (773 K to 903 K) under an oxygen stream. Catalysts were characterized by X-ray diffraction, surface area measurements, energy dispersive spectroscopy and scanning electron microscopy. The catalytic reduction of NO by CO took place in the temperature range (523 to 973) K under highly reductive conditions (NO:CO= 1:5) over NiWO4NiO, and WO3, respectively. The 100 % NO conversion at GHSV of 11460 h-1 was achieved at 773 K over NiWO4 and at 848 K over NiO. The WO3 was deactivated at 898 K. However, in the range (523 to 723) K NiO was more active than NiWO4 and WO3 catalysts.  相似文献   

19.
The activities of metal oxide CuO, SnO2, CoO, Ag2O, ZnO or noble metal Pt, Pd, Rh-doped In2O3/Al2O3 catalysts for selective catalytic reduction of NO by propene were investigated. The temperature windows for NO reduction over noble metal-doped In2O3/Al2O3 catalysts were shifted and broaden slightly compared with single component catalyst alone. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
采用表面改性法和等体积浸渍法制备了NiO-V2O5/SiO2和Cu/NiO-V2O5/SiO2光催化剂. 用TPR, XRD, UV-Vis DRS, IR和TPD-MS技术对催化剂的结构、吸光性能和化学吸附性能进行了表征, 研究了催化剂上CO2和甲醇光促表面催化反应的反应性能. 结果表明, 半导体NiO和V2O5复合后部分形成了Ni2+—O—V5+键联, 而且NiO和V2O5在催化剂表面有相互修饰作用, NiO的加入有助于提高V2O5在载体SiO2表面的分散程度, 抑制V2O5的聚集, 而且金属Cu和NiO的引入扩展了催化剂的光响应范围. 在催化剂表面存在多种活性吸附位, 催化剂对CO2和甲醇的有效吸附使得其在较低温度下就能促进碳酸二甲酯的紫外光化学合成. 用Cu/NiO-V2O5/SiO2催化剂, 在常压、空速300 h-1、140 ℃和125 W紫外灯辐照的情况下, CH3OH的转化率为14.2%, 碳酸二甲酯的选择性可达89.9 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号