共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Botta B Caporuscio F D'Acquarica I Delle Monache G Subissati D Tafi A Botta M Filippi A Speranza M 《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(31):8096-8105
Diastereomeric proton-bound [1(L)HA]+ complexes between selected amino acids (A=phenylglycine (Phg), tryptophan (Trp), tyrosine methyl ester (TyrOMe), threonine (Thr), and allothreonine (AThr)) and a chiral amido[4]resorcinarene receptor (1(L)) display a significant enantioselectivity when undergoing loss of the amino acid guest A by way of the enantiomers of 2-aminobutanes (B) in the gas phase. The enantioselectivity of the B-to-A displacement is ascribed to a combination of thermodynamic and kinetic factors related to the structure and the stability of the diastereomeric [1(L)HA]+ complexes and of the reaction transition states. The results of the present and previous studies allow classification of the [1(L)HA]+ complexes in three main categories wherein: i) guest A does not present any additional functionalities besides the amino acid one (alanine (Ala), Phg, and phenylalanine (Phe)); ii) guest A presents an additional alcohol function (serine (Ser), Thr, and AThr); and iii) guest A contains several additional functionalities on its aromatic ring (tyrosine (Tyr), TyrOMe, Trp, and 3,4-dihydroxyphenylalanine (DOPA)). Each category exhibits a specific enantioselectivity depending upon the predominant [1(L)HA]+ structures and the orientation of the 2-aminobutane reactant in the relevant adducts observed. The results may contribute to the understanding of the exceptional selectivity and catalytic properties of enzyme mimics towards unsolvated biomolecules. 相似文献
3.
Reactions of atomic lanthanide cations (excluding Pm+) with D2O have been surveyed in the gas phase using an inductively coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer to measure rate coefficients and product distributions in He at 0.35+/-0.01 Torr and 295+/-2 K. Primary reaction channels were observed corresponding to O-atom transfer, OD transfer and D2O addition. O-atom transfer is the predominant reaction channel and occurs exclusively with Ce+, Nd+, Sm+, Gd+, Tb+ and Lu+. OD transfer is observed exclusively with Yb+, and competes with O-atom transfer in the reactions with La+ and Pr+. Slow D2O addition is observed with early lanthanide cation Eu+ and the late lanthanide cations Dy+, Ho+, Er+ and Tm+. Higher-order sequential D2O addition of up to five D2O molecules is observed with LnO+ and LnOD+. A delay of more than 50 kcal mol(-1) is observed in the onset of efficient exothermic O-atom transfer, which suggests the presence of kinetic barriers of perhaps this magnitude in the exothermic O-atom transfer reactions of Dy+, Ho+, Er) and Tm+ with D2O. The reaction efficiency for O-atom transfer is seen to decrease as the energy required to promote an electron to make two non-f electrons available for bonding increases. The periodic trend in reaction efficiency along the lanthanide series matches the periodic trend in the electron-promotion energy required to achieve a d1s1 or d2 excited electronic configuration in the lanthanide cation, and also the periodic trends across the lanthanide row reported previously for several alcohols and phenol. An Arrhenius-like correlation is also observed for the dependence of D2O reactivity on promotion energy for early lanthanide cations, and exhibits a characteristic temperature of 2600 K. 相似文献
4.
Pepi F Barone V Cimino P Ricci A 《Chemistry (Weinheim an der Bergstrasse, Germany)》2007,13(7):2096-2108
Experimental studies on gaseous inorganic phosphate ions are practically nonexistent, yet they can prove helpful for a better understanding of the mechanisms of phosphate ester enzymatic processes. The present contribution extends our previous investigations on the gas-phase ion chemistry of diphosphate species to the [M(1)M(2)HP(2)O(7)](-) ions where M(1) and M(2) are the same or different and correspond to the Li, Na, K, Cs, and Rb cations. The diphosphate ions are formed by electrospray ionization of 10(-4) M solutions of Na(5)P(3)O(10) in CH(3)CN/H(2)O (1/1) and MOH bases or M salts as a source of M(+) cations. The joint application of mass spectrometric techniques and quantum-mechanical calculations makes it possible to characterize the gaseous [M(1)M(2)HP(2)O(7)](-) ions as a mixed ionic population formed by two isomeric species: linear diphosphate anion coordinated to two M(+) cations (group I) and [PO(3)M(1)M(2)HPO(4)](-) clusters (group II). The relative gas-phase stabilities and activation barriers for the isomerization I-->II, which depend on the nature of the M(+) cations, highlight the electronic susceptibility of P-O-P bond breaking in the active site of enzymes. The previously unexplored gas-phase reactivity of [M(1)M(2)HP(2)O(7)](-) ions towards alcohols of different acidity was investigated by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS). The reaction proceeds by addition of the alcohol molecule followed by elimination of a water molecule. 相似文献
5.
Luna A Mó O Yáñez M Gal JF Maria PC Guillemin JC 《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(36):9254-9261
A combined experimental and theoretical study on the gas-phase basicity and acidity of a series of cyanovinyl derivatives is presented. The gas-phase basicities and acidities of (N[triple chemical bond]C--CH==CH--X, X=CH(3), NH(2)) were obtained by means of Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry techniques. The corresponding calculated values were obtained at the G3B3 level of theory. The effects of exchanging CH(3) for SiH(3), and NH(2) for PH(2), were analyzed at the same level of theory. For the neutral molecules, the Z isomer is always the dominant species under standard gas-phase conditions at 298 K. The loss of the proton from the substituent X was found systematically to be much more favorable than deprotonation of the HC==CH linking group. The corresponding isomeric E ion is much more stable than the Z ion, so that only the former should be found in the gas phase. The most significant structural changes upon deprotonation occur for the methyl and amino derivatives because, in both cases, deprotonation of X leads to a significant charge delocalization in the corresponding anion. Protonation takes place systematically at the cyano group, whereby the isomeric E ion is again more stable than the Z ion. Push-pull effects explain the preference of aminoacrylonitrile to be protonated at the cyano group, which also explains the high basicity of this derivative relative to other members of the analyzed series that present rather similar gas-phase basicities, GB approximately 780 kJ mol(-1), indicating that the different nature of the substituents has only a weak effect on the intrinsic basicity of the cyano group. The cyanovinyl derivatives have a significantly stronger gas-phase acidity than that of the corresponding vinyl compounds CH(2)==CH--X. This acidity-strengthening effect of the cyano group is attributed to the greater stabilization of the anion with respect to the corresponding neutral compound. 相似文献
6.
The intrinsic reactivity of eight gaseous, mass-selected 2-azabutadienyl cations toward polar [4(+) + 2] cycloaddition with ethyl vinyl ether has been investigated by pentaquadrupole mass spectrometric experiments. Cycloaddition occurs readily for all the ions and, with the only exception of those from the N-acyl 2-azabutadienyl cations (N-acyliminium ions), the cycloadducts are found to dissociate readily upon collision activation (CID) both by retro-Diels-Alder reaction and by a characteristic loss of an ethanol (46u) neutral molecule. Ethanol loss from the intact polar [4(+) + 2] cycloadduct functions therefore as a structurally diagnostic test: 72 u neutral gain followed by 46 u neutral loss, i.e., as a combined ion-molecule reaction plus CID 'signature' for N-H, N-alkyl and N-aryl 2-azabutadienyl cations. The two N-acyliminium ions tested are exceptional as they form intact cycloadducts with ethyl vinyl ether which dissociate exclusively by the retro-Diels-Alder pathway. 相似文献
7.
8.
9.
Influence of Cyclopentadienyl Ring‐Tilt on Electron‐Transfer Reactions: Redox‐Induced Reactivity of Strained [2] and [3]Ruthenocenophanes 下载免费PDF全文
Dr. Andrew D. Russell Prof. Joe B. Gilroy Prof. Kevin Lam Dr. Mairi F. Haddow Prof. Jeremy N. Harvey Prof. William E. Geiger Prof. Ian Manners 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(49):16216-16227
In contrast to ruthenocene [Ru(η5‐C5H5)2] and dimethylruthenocene [Ru(η5‐C5H4Me)2] ( 7 ), chemical oxidation of highly strained, ring‐tilted [2]ruthenocenophane [Ru(η5‐C5H4)2(CH2)2] ( 5 ) and slightly strained [3]ruthenocenophane [Ru(η5‐C5H4)2(CH2)3] ( 6 ) with cationic oxidants containing the non‐coordinating [B(C6F5)4]? anion was found to afford stable and isolable metal?metal bonded dicationic dimer salts [Ru(η5‐C5H4)2(CH2)2]2[B(C6F5)4]2 ( 8 ) and [Ru(η5‐C5H4)2(CH2)3]2[B(C6F5)4]2 ( 17 ), respectively. Cyclic voltammetry and DFT studies indicated that the oxidation potential, propensity for dimerization, and strength of the resulting Ru?Ru bond is strongly dependent on the degree of tilt present in 5 and 6 and thereby degree of exposure of the Ru center. Cleavage of the Ru?Ru bond in 8 was achieved through reaction with the radical source [(CH3)2NC(S)S?SC(S)N(CH3)2] (thiram), affording unusual dimer [(CH3)2NCS2Ru(η5‐C5H4)(η3‐C5H4)C2H4]2[B(C6F5)4]2 ( 9 ) through a haptotropic η5–η3 ring‐slippage followed by an apparent [2+2] cyclodimerization of the cyclopentadienyl ligand. Analogs of possible intermediates in the reaction pathway [C6H5ERu(η5‐C5H4)2C2H4][B(C6F5)4] [E=S ( 15 ) or Se ( 16 )] were synthesized through reaction of 8 with C6H5E?EC6H5 (E=S or Se). 相似文献
10.
de Meijere A Lee CH Kuznetsov MA Gusev DV Kozhushkov SI Fokin AA Schreiner PR 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(21):6175-6184
The synthesis of the (CH)12 hydrocarbon [D(3d)]-octahedrane (heptacyclo[6.4.0.0(2,4).0(3,7).0(5,12).0(6,10).0(9,11)]dodecane) 1 and its selective functionalization retaining the hydrocarbon cage is described. The B3LYP/6-311+G* strain energy of 1 is 83.7 kcal mol(-1) (4.7 kcal mol(-1) per C-C bond) which is significantly higher than that of the structurally related (CH)16 [D(4d)]-decahedrane 2 (75.4 kcal mol(-1); 3.1 kcal mol(-1) per C-C bond) and (CH)20 [I(h)]-dodecahedrane 3 (51.5 kcal mol(-1); 1.7 kcal mol(-1) per C-C bond); the heats of formation for 1-3 computed according to homodesmotic equations are 52, 35, and 4 kcal mol(-1). Catalytic hydrogenation of 1 leads to consecutive opening of the two cyclopropane rings to give C2-bisseco-octahedrane (pentacyclo[6.4.0.0(2,6).0(3,11).0(4,9)]dodecane) 16 as the major product. Although 1 is highly strained, its carbon skeleton is kinetically quite stable: Upon heating, 1 does not decompose until above 180 degrees C. The B3LYP/6-31G* barriers for the S(R)2 attack of the tBuO. and Br3C. radicals on a carbon atom of one of the cyclopropane fragments (Delta(298) = 27-28 kcal mol(-1)) are higher than those for hydrogen atom abstraction. The latter barriers are virtually identical for the abstraction from the C1-H and C2-H positions with the tBuO. radical (DeltaG(298) = 17.4 and 17.9 kcal mol(-1), respectively), but significantly different for the reaction at these positions with the Br3C. radical (DeltaG(298) = 18.8 and 21.0 kcal mol(-1)). These computational results agree well with experiments, in which the chlorination of 1 with tert-butyl hypochlorite gave a mixture of 1- and 2-chlorooctahedranes (ratio 3:2). The bromination with carbon tetrabromide under phase-transfer catalytic (PTC) conditions (nBu4NBr/NaOH) selectively gave 1-bromooctahedrane in 43 % isolated yield. For comparison, the PTC bromination was also applied to 2,4-dehydroadamantane yielding 54 % 7-bromo-2,4-dehydroadamantane. 相似文献
11.
Yamazaki S 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(20):6026-6036
Recent developments concerning the synthesis of methylenetetrahydrofurans and methylenepyrrolidines by one-pot formal [3+2] cycloadditions involving propargylic (and allylic) alcohols and amines with electrophilic alkenes are described. The synthetic methods provide powerful tools to prepare highly functionalized oxygen- and nitrogen-containing five-membered ring systems. The reactions can be effectively promoted by base, base/transition metals, and Lewis acids, depending on the substrates. 相似文献
12.
Zaccheria F Ravasio N Psaro R Fusi A 《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(24):6426-6431
A method for the anaerobic oxidation of a wide series of alcohols including cyclohexanols and steroidal alcohols, has been set up. It relies on a transfer dehydrogenation reaction from the substrate alcohol to styrene catalyzed by a heterogeneous, reusable copper catalyst under very mild liquid-phase experimental conditions (90 degrees C, N(2)) and shows unusual selectivity. Thus, the method is selective for the oxidation of secondary and allylic alcohols even in the presence of unprotected primary and benzylic alcohols. Electronic effects and the choice of the hydrogen acceptor account for the selectivity observed. 相似文献
13.
The gas-phase acidity of D-glucopyranose was studied by means of B3LYP calculations combined with 6-31G(d,p) or 6-31+G(d,p) standard basis sets. For each anomer, deprotonation of the various primary and secondary hydroxyl groups was considered. As in solution, the anomeric hydroxyl is found to be the most acidic for both anomers, but only when the 6-31+G(d,p) basis set is used for geometry optimization. Deprotonation of the anomeric hydroxyl induces an important C(1)--O endocyclic bond elongation and subsequently promotes an energetically favored ring-opening process as attested by the very small calculated activation barriers. The results also suggest that interconversion between the various deprotonated alpha- and beta-anomers may easily occur under slightly energetic conditions. B3LYP/6-311+G(2df,2p) calculations led to the an absolute gas-phase acidity of deltaacidGo(298)(alpha-D-glucose) = 1398 kJ mol(-1). This estimate matches well the only experimental value available to date. Finally, this study again confirms that the use of diffuse functions on heavy atoms is necessary to describe anionic systems properly and to achieve good relative and absolute gas-phase acidities. 相似文献
14.
15.
Gas-phase basicity of methionine 总被引:1,自引:0,他引:1
Proton affinity and protonation entropy of methionine (Met) were determined by the extended kinetic method from ESI-Q-TOF tandem mass spectrometry experiments. The values, PA(Met) = 937.5 +/- 2.9 kJ mol(-1) and Delta(p)S degrees (Met) = - 22 +/- 5 J mol(-1) K(-1), lead to gas-phase basicity GB(Met) = 898.2 +/- 3.2 kJ.mol(-1). Quantum chemical calculations using density functional theory confirm that the proton affinity of Met is indeed in the 940 kJ mol(-1) range and that a significant entropy loss, of at least - 25 J mol(-1) K(-1), occurs upon protonation. This last point is evidenced here for the first time and suggests revision of the tabulated protonation thermochemistry of Met. A comparison with previous experimental data allows us to propose the following evaluated thermochemical values: PA(Met) = 943 +/- 4 kJ mol(-1) and Delta(p)S degrees (Met) = - 35 +/- 15 J mol(-1) K(-1) and GB(Met) = 900 +/- 2 kJ mol(-1). 相似文献
16.
Botta B Tafi A Caporuscio F Botta M Nevola L D'Acquarica I Fraschetti C Speranza M 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(12):3585-3595
Diastereomeric proton-bound complexes formed between (R)- and (S)-amphetamine and some chiral amido[4]resorcinarene receptors display significant enantioselectivities when reacting with the enantiomers of 2-aminobutane in the gas phase. The origins of the measured enantioselectivities are discussed in the light of molecular mechanics calculations and molecular dynamics simulations and are ascribed to a combination of structural and dynamic factors, including the lengths and the isomeric structures of the host asymmetric pendants and the frequencies and amplitudes of their motion, as well as those of the proton-bonded amphetamine guests. The emerging picture may represent a starting point for deeper comprehension of the factors determining the different affinities of (R)- and (S)-amphetamine towards various chiral receptors, their selective binding to the monoamine transporters, and their sensitivity to specific inorganic ions. 相似文献
17.
18.
Piers WE Bourke SC Conroy KD 《Angewandte Chemie (International ed. in English)》2005,44(32):5016-5036
Boron cations are elusive and highly electrophilic species that play a key role in the chemistry of boron. Despite early interest in the chemistry of boron cations, until recently they have largely remained chemical curiosities. However, hints at harnessing their potential as potent electrophiles have begun to appear and developments in weakly coordinating anion technology suggest that this is an area of research that is ripe for exploration. It has been nearly 20 years since the last major review on boron cations; herein we summarize the progress in the area since that time. 相似文献
19.
M. Z. Kassaee A. R. Bekhradnia 《Phosphorus, sulfur, and silicon and the related elements》2013,188(10):2025-2028
A fast, mild, and reasonable oxidizing agent, pyridinium sulfonate chlorochromate (VI), C5H5NSO3H [CrO3Cl] (PSCC) is synthesized. Its reactions with primary, secondary, benzylic, and allylic alcohols under very mild conditions give the corresponding carbonyl compounds. These are obtained with relatively short reaction times. The oxidant/substrate ratios of 1:1 are employed. 相似文献
20.
A family of enantiomerically pure oxonium ions, that is O-protonated 1-aryl-1-methoxyethanes, has been generated in the gas phase by the (CH(3))(2)Cl(+) methylation of the corresponding 1-arylethanols. Some information on their reaction dynamics was obtained from a detailed kinetic study of their inversion of configuration and dissociation. The activation parameters of the inversion reaction are found to obey two different isokinetic relationships depending upon the nature and the position of the substituents in the oxonium ions. In contrast, the activation parameters of the dissociation reaction obey a single isokinetic relationship. The inversion and dissociation rate constants do not follow simple linear free-energy relationships. This complicated kinetic picture has been rationalized in terms of different activation dynamics in gaseous CH(3)Cl, which, in turn, determine the reaction dynamics of the oxonium ion. When the predominant activation of the oxonium ion involves resonant energy exchange from the 1015 cm(-1) CH(3) rocking mode of unperturbed CH(3)Cl, the inversion reaction proceeds through the dynamically most favored TS, characterized by the unassisted C(alpha)bond;O bond elongation. When, instead, the activation of the oxonium ions requires the formation of an intimate encounter complex with CH(3)Cl, the inversion reaction takes place via the energetically most favored TS, characterized by multiple coordination of the CH(3)OH moiety with the H(alpha) and H(ortho) atoms of the benzylic residue. The activation dynamics operating in the intimate encounter complex with CH(3)Cl is also responsible for the dissociation of most selected oxonium ions. 相似文献