首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 472 毫秒
1.
A slight modification of the recent Penrose and Lebowitz treatment of thermodynamic metastable states is presented. For the case of periodic boundary conditions, this modification allows the condition of metastability to be extended to all the metastable states in the van der Waals-Maxwell theory of the liquid-vapor phase transition, that is, for all states satisfyingf 0()+1/2 2>f(, 0+) andf0()+x>0 wheref(, 0+) is the (stable) Helmholtz free energy density of the generalized van der Waals-Maxwell theory andf 0() is the Helmholtz free energy density of a reference system with no long-range interaction, is a mean field-type term arising from a long-range Kac interaction, is the overall mean particle density, andx is any positive number. For the case of rigid-wall boundary conditions, a more restrictive condition is placed onx.  相似文献   

2.
Introducing a finite correlation 0 between any two learned patterns (others remaining uncorrelated), we observe in a numerical simulation that the Hopfield model stores these two patterns with correlation f such that f0 for any loading capacity. The patterns are memorized perfectly (with f= 0) up to -0.05 for finite correlations 0 not exceeding a value c(), where c() decreases continuously to zero at -0.05.  相似文献   

3.
We review some exact results for the motion of a tagged particle in simple models. Then, we study the density dependence of the self-diffusion coefficientD N() in lattice systems with simple symmetric exclusion in which the particles can jump, with equal rates, to a set ofN neighboring sites. We obtain positive upper and lower bounds onF N()=N{(1–)–[DN()/DN(0)]}/[(1–)]x for [0, 1]. Computer simulations for the square, triangular, and one-dimensional lattices suggest thatF N becomes effectively independent ofN forN20.  相似文献   

4.
A theorem is derived that enables a systematic enumeration of all the linear superoperators (associated with a two-level quantum system) that generate, via the law of motion = , mappings (0) (t) restricted to the domain of statistical operators. Such dynamical evolutions include the usual Hamiltonian motion as a special case, but they also encompass more general motions, which are noncyclic and feature a destination state (t ) that is in some cases independent of (0).  相似文献   

5.
Monte Carlo simulation and series expansion shows the radius of gyration of large clusters withs sites each to vary ass with0.56 in two and0.47 in three dimensions at the percolation threshold, and with(d=2)0.65 and(d=3)0.53 for random lattice animals (zero concentration). Clusters up tos=100 were used. The perimeter of random animals approaches 2.8s for larges on the simple cubic lattice. Monte Carlo simulation of the Eden process (growing animals) up tos=5,000 indicates a systematic variation of about ±0.05 for the effective exponent=(s) and thus suggests that the true asymptotic exponents may be compatible with the predictions of hyper-scaling.  相似文献   

6.
We calculate, using numerical methods, the Lyapunov exponent (E) and the density of states (E) at energy E of a one-dimensional non-Hermitian Schrödinger equation with off-diagonal disorder. For the particular case we consider, both (E) and (E) depend only on the modulus of E. We find a pronounced maximum of (|E|) at energy E=2/ , which seems to be linked to the fixed point structure of an associated random map. We show how the density of states (E) can be expanded in powers of E. We find (|E|)=(1/ 2)+(4/3 3) |E|2+. This expansion, which seems to be asymptotic, can be carried out to an arbitrarily high order.  相似文献   

7.
We analyze the limiting behavior of the densities A(t) and B(t), and the random spatial structure(r) = ( A(t)., B(t)), for the diffusion-controlled chemical reaction A+Binert. For equal initial densities B(0) = b(0) there is a change in behavior fromd 4, where A(t) = B(t) C/td/4, tod 4, where A(t) = b(t) C/t ast ; the termC depends on the initial densities and changes withd. There is a corresponding change in the spatial structure. Ind < 4, the particle types separate with only one type present locally, and , after suitable rescaling, tends to a random Gaussian process. Ind >4, both particle types are, after large times, present locally in concentrations not depending on type or location. Ind=4, both particle types are present locally, but with random concentrations, and the process tends to a limit.  相似文献   

8.
We employ a basic formalism from convex analysis to show a simple relation between the entanglement of formation EF and the conjugate function E* of the entanglement function E()=S(TrA). We then consider the conjectured strong superadditivity of the entanglement of formation EF()EF(I)+EF(II), where I and II are the reductions of to the different Hilbert space copies, and prove that it is equivalent with subadditivity of E*. Furthermore, we show that strong superadditivity would follow from multiplicativity of the maximal channel output purity for quantum filtering operations, when purity is measured by Schatten p-norms for p tending to 1.  相似文献   

9.
The Lorentz transformation is derived without assuming that the velocity of light is a constant. This suggests that the constantc which appears in the transformation has a deeper significance than heretofore commonly assumed. It is hypothesized that there exists, in all of physical reality, velocities of only one magnitude. The magnitude isc, the speed of light in vacuum. This hypothesis forces us to view a fundamental particle as an extended object and matter in general as a field (t, r, ), which we give the generic name stuff. An important feature of the field is that at each spacetime point(t, r) stuff travels in all directions with speedc. In order to elucidate the nature of (t, r, ), the equations determining for a one-dimensional world are derived and solved. Fundamental particles are shown to exist and their structure is obtained.A private communication; not an official publication of the National Bureau of Standards.  相似文献   

10.
Thermodynamics arguments have been employed to derive how the energy density depends on the temperatureT for a fluid whose pressurep obeys the equation of statep = ( –1), where is a constant. Three different methods, among them the one considered by Boltzmann (Carnot cycle), lead to the expression = T/( –1), where is a constant. This result also appears naturally in the framework of general relativity for spacetimes with constant spatial curvature. Some particular cases are vacuum (p = –), cosmic strings (p= –1/3), radiation (p = 1/3), and stiff matter (p = ). It is also shown that such results can be adapted for blackbody radiation inN spatial dimensions.  相似文献   

11.
The total energy of many-nucleon system is expressed as a functional E[ p(r), n(r)] of the proton and neutron densities p(r) and n(r), respectively. The distribution(r) of nucleons in the nucleus, which is essential to determine the energy functional, is chosen. The energy density formalism is applied to finite nuclei, and then the binding energies per nucleon together with the mean square radii, for some medium and heavy nuclei, are obtained. Finally the achieved results are compared with the corresponding experimental values.  相似文献   

12.
We use the reference interaction site model (RISM) integral equation theory to study the percolation behavior of fluids composed of long molecules. We examine the roles of hard core size and of length-to-width ratio on the percolation threshold. The critical density c is a nonmonotonic function of these parameters exhibiting competition of different effects. Comparisons with Monte Carlo calculations of others are reasonably good. For critical exponents, the theory yields =2=2 for molecules of any noninfinite lengthL. WhenL is very large, the theory yields cL –2. These predictions compare favorably with observations of the conductivity for random assemblies of conductive fibers. The threshold region where asymptotic scaling holds requires the correlation length (/ c ) –v to be much larger thanL. Evidently, the range of densities in this region diminishes asL increases, requiring that density deviations from c be no larger thanL –2. Otherwise, crossover behavior will be observed.  相似文献   

13.
A frictional quantum mechanical system consisting of a particle being scattered inelastically by a chain ofN infinitely heavy, equidistantly spaced two-level atoms is studied. In continuation of Part 1 of this work (G. Süßmann, P. Szilas, Z. Phys. B-Condensed Matter39, 125 (1980)) where the stationary problem has been considered the time dependent problem of a Gaussian wave packet impinging on the target atoms is treated. The reduced density matrix x| R (t)|x of the particle is calculated. With this explicit expression the time derivative of the mean positiond<x>/dt is found in agreement with the stationary mean velocity of Part 1. As a measure of the incoherence of R , i.e. the deviation of the state of the particle from a pure state, the quantityI:=1-Tr( R 2 ) is calculated for the quasi elastic case, and an estimate is given for the inelastic case.  相似文献   

14.
We present Monte Carlo simulations of annihilation reactionA+A0 in one dimensional lattice and in three different fractal substrata. In the model, the particles diffuse independently and when two of them attempt to occupy the same substratum site, they react with a probabilityp. For different kinds of initial distributions and in the short an intermediate time regimes, the results for 0<p1 show that the density ofA particles approximately behaves as (t)=(t=0)f(t/t 0), with the scaling functionf(x)1 forx1,f(x)x –y forx1. The crossover timet 0, behaves ast 0 0eff –1y where theeffective initial density 0eff depends on (t=0) and on the kind of initial distribution. For a given substratum of spreading dimensiond s, the exponenty(d s/2<y<1) depends only onp and its value increases asp decreases (y1 whenp0). In the very long time regime it is expected thatp(t)t –ds/2 independently ofp.  相似文献   

15.
We consider general even ferromagnetic systems with pair interactions in a nonnegative external magnetic fieldh. Classes of single-site measures are found such that the GHS inequality is valid for allh h, whereh 0 is a number depending on but independent of the size of the system. These measures include both absolutely continuous and discrete measures. For =a 0+{(1–a)/2} · ( 1 + –1), somea [0, 1),h is determined exactly.Alfred P. Sloan Research Fellow. Research supported in part by National Science Foundation grant No. MCS 80-02149.Alfred P. Sloan Research Fellow. Research supported in part by National Science Foundation grant No. MCS 77-20683 and by the U.S.-Israel Binational Science Foundation.  相似文献   

16.
Aspects of transport in a highly multiple-scattering environment are investigated by examining random walkers moving in media having anisotropic angular scattering cross sections (turn-angle distributions). A general expression is obtained for the mean square displacement x2 of a random walker executing ann-step walk in an infinite homogeneous material, and results are used to predict scaling relations for the probability() that a walker returns to the planar surface of a semi-infinite medium at a distance from the point of its insertion.  相似文献   

17.
The impurity contribution to the resistivity in zero field (T) of dilute hexagonal single crystals of ZnMn, CdMn and MgMn has been studied in the mK range on samples cut parallel () and perpendicular () to thec-axis, using a SQUID technique for the measurements. Typical spin glass behavior is found in (T) as well as (T) for all alloys, with Kondo like logarithmic increases at higher temperatures and maxima atT m at lower temperatures, indicating the influence of impurity interactions. The differences in the corresponding isotropic resistivity poly(T) between the three systems can qualitatively be understood within the framework of a theoretical model by Larsen, describing (T) as a function of universal quantitiesT/T K and RKKY/T K , where RKKY is the RKKY-interaction strength andT K the Kondo temperature. With respect to the two lattice directions studied, the behavior of (T and (T is anisotropic in the Kondo regime as well as in the range where ordering becomes important. While the anisotropy in the Kondo slope can be understood by an anisotropic unitarity limit, the understanding of the anisotropy in region where impurity interactions are important remains problematic.Dedicated to Prof. Dr. S. Methfessel on the occasion of his 60th birthday  相似文献   

18.
The decay constant of64Cu in Cu–Ag solid solutions has been measured at various Cu concentrations. Deduced values of the relative changes of electron densities (0)/(0) at the Cu nucleus are given. The observed concentration dependence of (0)/(0) is discussed in terms of a volume effect and charge transfer from Cu to Ag.  相似文献   

19.
The resistivity (100 K) scatters very much for YBa2Cu3Ox prepared as single crystals, epitaxial films or bulk samples which consist of grains of 1 to 10 m diameter. An analysis of (T) for granular bulk samples is presented indicating the existence of a low intrinsic resistivity i (T)= 0L i + i T with 0L i 0 and i 0.5µcm/K. The large grain boundary resistivity b between the grains (>1 m) yield a macroscopic percolative conduction path lengtheningL/L 0>1 with a reduced effective cross sectionC<C 0 and thus, (T)= b +(LC 0/L 0 C i (T). Evidence is presented for weak links inside single crystals and grains.  相似文献   

20.
The well-established relation between Potts models withv spin values and random-cluster models (with intracluster bonding favored over intercluster bonding by a factorv) is explored, but with the random-cluster model replaced by a much generalized polymer model, implying a corresponding generalization of the Potts model. The analysis is carried out in terms a given defined functionR(), an entropy/free-energy density for the polymer model in the casev=1, expressed as a function of the density of units. The aim of the analysis is to determine the analogR v () ofR() for general nonnegativev in terms ofR(), and thence to determine the critical value of density vg at which gelation occurs. This critical value is independent ofv up to a valuev P, the Potts-critical value. What is principally required ofR() is that it should show a certain given concave/convex behavior, although differentiability and another regularizing condition are required for complete conclusions. Under these conditions the unique evaluation ofR v () in terms ofR() is given in a form known to hold for integralv but not previously extended. The analysis is carried out in terms of the Legendre transforms of these functions, in terms of which the phenomena of criticality (gelation) and Potts criticality appear very transparently andv P is easily determined. The value ofv P is 2 under mild conditions onR. Special interest attaches to the functionR 0(), which is shown to be the greatest concave minorant ofR(). The naturalness of the approach is demonstrated by explicit treatment of the first-shell model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号