首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we extend the Moreau (Riesz) decomposition theorem from Hilbert spaces to Banach spaces. Criteria for a closed subspace to be (strongly) orthogonally complemented in a Banach space are given. We prove that every closed subspace of a Banach space X with dim X ≥ 3 (dim X ≤ 2) is strongly orthognally complemented if and only if the Banach space X is isometric to a Hilbert space (resp. strictly convex), which is complementary to the well-known result saying that every closed subspace of a Banach space X is topologically complemented if and only if the Banach space X is isomorphic to a Hilbert space.  相似文献   

2.
Let X and Y Banach spaces. Two new properties of operator Banach spaces are introduced. We call these properties "boundedly closed" and "d-boundedly closed". Among other results, we prove the following one. Let U(X, Y){\cal U}(X, Y) an operator Banach space containing a complemented copy of c0. Then we have: 1) If U(X, Y){\cal U}(X, Y) is boundedly closed then Y contains a copy of c0. 2) If U(X, Y){\cal U}(X, Y) is d-boundedly closed, then X* or Y contains a copy of c0.  相似文献   

3.
We say that a Banach space X satisfies the “descent spectrum equality” (in short, DSE) whenever, for every bounded linear operator T on X, the descent spectrum of T as an operator coincides with the descent spectrum of T as an element of the algebra of all bounded linear operators on X. We prove that the DSE is fulfilled by ℓ1, all Hilbert spaces, and all Banach spaces which are not isomorphic to any of their proper quotients (so, in particular, by the hereditarily indecomposable Banach spaces [8]), but not by ℓ p , for 1 < p ≤ ∞ with p ≠ 2. Actually, a Banach space is not isomorphic to any of its proper quotients if and only if it is not isomorphic to any of its proper complemented subspaces and satisfies the DSE.  相似文献   

4.
There exists a real hereditarily indecomposable Banach space X=X(C) (respectively X=X(H)) such that the algebra L(X)/S(X) is isomorphic to C (respectively to the quaternionic division algebra H).Up to isomorphism, X(C) has exactly two complex structures, which are conjugate, totally incomparable, and both hereditarily indecomposable. So there exist two Banach spaces which are isometric as real spaces but totally incomparable as complex spaces. This extends results of J. Bourgain and S. Szarek [J. Bourgain, Real isomorphic complex Banach spaces need not be complex isomorphic, Proc. Amer. Math. Soc. 96 (2) (1986) 221-226; S. Szarek, On the existence and uniqueness of complex structure and spaces with “few” operators, Trans. Amer. Math. Soc. 293 (1) (1986) 339-353; S. Szarek, A superreflexive Banach space which does not admit complex structure, Proc. Amer. Math. Soc. 97 (3) (1986) 437-444], and proves that a theorem of G. Godefroy and N.J. Kalton [G. Godefroy, N.J. Kalton, Lipschitz-free Banach spaces, Studia Math. 159 (1) (2003) 121-141] about isometric embeddings of separable real Banach spaces does not extend to the complex case.The quaternionic example X(H), on the other hand, has unique complex structure up to isomorphism; other examples with a unique complex structure are produced, including a space with an unconditional basis and non-isomorphic to l2. This answers a question of S. Szarek in [S. Szarek, A superreflexive Banach space which does not admit complex structure, Proc. Amer. Math. Soc. 97 (3) (1986) 437-444].  相似文献   

5.
Let X be a real Banach space. We prove that the existence of an injective, positive, symmetric and not strictly singular operator from X into its dual implies that either X admits an equivalent Hilbertian norm or it contains a nontrivially complemented subspace which is isomorphic to a Hilbert space. We also treat the nonsymmetric case.  相似文献   

6.
We formulate a general theory of positions for subspaces of a Banach space: we define equivalent and isomorphic positions, study the automorphy index a(Y,X) that measures how many non-equivalent positions Y admits in X, and obtain estimates of a(Y,X) for X a classical Banach space such as ?p,Lp,L1,C(ωω) or C[0,1]. Then, we study different aspects of the automorphic space problem posed by Lindenstrauss and Rosenthal; namely, does there exist a separable automorphic space different from c0 or ?2? Recall that a Banach space X is said to be automorphic if every subspace Y admits only one position in X; i.e., a(Y,X)=1 for every subspace Y of X. We study the notion of extensible space and uniformly finitely extensible space (UFO), which are relevant since every automorphic space is extensible and every extensible space is UFO. We obtain a dichotomy theorem: Every UFO must be either an L-space or a weak type 2 near-Hilbert space with the Maurey projection property. We show that a Banach space all of whose subspaces are UFO (called hereditarily UFO spaces) must be asymptotically Hilbertian; while a Banach space for which both X and X are UFO must be weak Hilbert. We then refine the dichotomy theorem for Banach spaces with some additional structure. In particular, we show that an UFO with unconditional basis must be either c0 or a superreflexive weak type 2 space; that a hereditarily UFO Köthe function space must be Hilbert; and that a rearrangement invariant space UFO must be either L or a superreflexive type 2 Banach lattice.  相似文献   

7.
On the complemented subspaces problem   总被引:11,自引:0,他引:11  
A Banach space is isomorphic to a Hilbert space provided every closed subspace is complemented. A conditionally σ-complete Banach lattice is isomorphic to anL p -space (1≤p<∞) or toc 0(Γ) if every closed sublattice is complemented.  相似文献   

8.
 We study the relation of to the subspaces and quotients of Banach spaces of continuous vector-valued functions , where K is an arbitrary dispersed compact set. More precisely, we prove that every infinite dimensional closed subspace of totally incomparable to X contains a copy of complemented in . This is a natural continuation of results of Cembranos-Freniche and Lotz-Peck-Porta. We also improve our result when K is homeomorphic to an interval of ordinals. Next we show that complemented subspaces (resp., quotients) of which contain no copy of are isomorphic to complemented subspaces (resp., quotients) of some finite sum of X. As a consequence, we prove that every infinite dimensional quotient of which is quotient incomparable to X, contains a complemented copy of . Finally we present some more geometric properties of spaces.  相似文献   

9.
Banach spaces X whose duals are isomorphic or isometric to l1(Γ) are characterized by certain classes of operators on X. It is proved that a separable, conjugate space isomorphic to a complemented subspace of an L1(S, Σ, μ) space is isomorphic to l1; a L1 space contained in a separable, conjugate space is isomorphic to a subspace of l1.  相似文献   

10.
 We study the relation of to the subspaces and quotients of Banach spaces of continuous vector-valued functions , where K is an arbitrary dispersed compact set. More precisely, we prove that every infinite dimensional closed subspace of totally incomparable to X contains a copy of complemented in . This is a natural continuation of results of Cembranos-Freniche and Lotz-Peck-Porta. We also improve our result when K is homeomorphic to an interval of ordinals. Next we show that complemented subspaces (resp., quotients) of which contain no copy of are isomorphic to complemented subspaces (resp., quotients) of some finite sum of X. As a consequence, we prove that every infinite dimensional quotient of which is quotient incomparable to X, contains a complemented copy of . Finally we present some more geometric properties of spaces. Received 8 November 2000; in revised form 7 December 2001  相似文献   

11.
Let X be a smooth algebraic surface, L ? Pic(X) L \in \textrm{Pic}(X) and H an ample divisor on X. Set MX,H(2; L, c2) the moduli space of rank 2, H-stable vector bundles F on X with det(F) = L and c2(F) = c2. In this paper, we show that the geometry of X and of MX,H(2; L, c2) are closely related. More precisely, we prove that for any ample divisor H on X and any L ? Pic(X) L \in \textrm{Pic}(X) , there exists n0 ? \mathbbZ n_0 \in \mathbb{Z} such that for all n0 \leqq c2 ? \mathbbZ n_0 \leqq c_2 \in \mathbb{Z} , MX,H(2; L, c2) is rational if and only if X is rational.  相似文献   

12.
A result of T. A. Gillespie implies that the strong operator closure of any abstractly s\sigma -complete Boolean algebra of projections in a Banach space X which does not contain a copy of c0 is Bade complete. It is shown that the same conclusion is valid for another (extensive) class of Banach spaces X, namely those which are weakly compactly generated. As a consequence, it follows that a Boolean algebra of projections in a separable Banach space is abstractly s\sigma -complete iff it is abstractly complete. It is also shown that a Banach space X has the property that the strong closure of every abstractly complete Boolean algebra of projections in X is Bade complete iff X does not contain a copy of l\ell ^\infty \!.  相似文献   

13.
Even infinite-dimensional real Banach spaces   总被引:1,自引:0,他引:1  
This article is a continuation of a paper of the first author [V. Ferenczi, Uniqueness of complex structure and real hereditarily indecomposable Banach spaces, Adv. Math. 213 (1) (2007) 462–488] about complex structures on real Banach spaces. We define a notion of even infinite-dimensional real Banach space, and prove that there exist even spaces, including HI or unconditional examples from [V. Ferenczi, Uniqueness of complex structure and real hereditarily indecomposable Banach spaces, Adv. Math. 213 (1) (2007) 462–488] and C(K) examples due to Plebanek [G. Plebanek, A construction of a Banach space C(K) with few operators, Topology Appl. 143 (2004) 217–239]. We extend results of [V. Ferenczi, Uniqueness of complex structure and real hereditarily indecomposable Banach spaces, Adv. Math. 213 (1) (2007) 462–488] relating the set of complex structures up to isomorphism on a real space to a group associated to inessential operators on that space, and give characterizations of even spaces in terms of this group. We also generalize results of [V. Ferenczi, Uniqueness of complex structure and real hereditarily indecomposable Banach spaces, Adv. Math. 213 (1) (2007) 462–488] about totally incomparable complex structures to essentially incomparable complex structures, while showing that the complex version of a space defined by S. Argyros and A. Manoussakis [S. Argyros, A. Manoussakis, An indecomposable and unconditionally saturated Banach space, Studia Math. 159 (1) (2003) 1–32] provides examples of essentially incomparable complex structures which are not totally incomparable.  相似文献   

14.
It is shown that James’ quasi-reflexive Banach space is primary. We also prove if X is a complemented reflexive subspace ofJ thenX is isomorphic to a complemented subspace of (ΣJ n )I2 whereJ n is the span of the firstn elements of the unit vector basis ofJ.  相似文献   

15.
In this paper we prove the following result which solves a question raised by A. Pelczynski: “Every stable Banach space with an unconditional basis is isomorphic to a complemented subspace of some stable Banach space with a symmetric basis.” Moreover, we show that all the interpolation spacesl p ,l q θ,X,1 1≦p, q<∞ andX stable, are stable.  相似文献   

16.
We show that if U is a convex, balanced, open subset of the Banach space X constructed by Tsirelson, then every proper, finitely generated ideal of H (U)\cal {H} (U) has a common zero.  相似文献   

17.
We give an example of a Banach spaceX such that (i)X * is isometric tol 1, (ii)X is isometric to a subspace ofCθ) and (iii)X is not isomorphic to a complemented subspace of anyC(K) space. This is a part of the first author’s Ph. D. Thesis prepared in the Hebrew University of erusalem under the supervision of the second author.  相似文献   

18.
《Quaestiones Mathematicae》2013,36(3):287-294
We prove that every 2-summing operator from a Banach space X into an L 1-space is nuclear if and only if X is isomorphic to a Hilbert space. Then we study the class of Banach spaces X for which Π2(l 2, X) = N 1(l 2, X).  相似文献   

19.
A new method of defining hereditarily indecomposable Banach spaces is presented. This method provides a unified approach for constructing reflexive HI spaces and also HI spaces with no reflexive subspace. All the spaces presented here satisfy the property that the composition of any two strictly singular operators is a compact one. This yields the first known example of a Banach space with no reflexive subspace such that every operator has a non-trivial closed invariant subspace.  相似文献   

20.
We prove that every Banach space containing a complemented copy of c0 has an antiproximinal body for a suitable norm. If, in addition, the space is separable, there is a pair of antiproximinal norms. In particular, in a separable polyhedral space X, the set of all (equivalent) norms on X having an isomorphic antiproximinal norm is dense. In contrast, it is shown that there are no antiproximinal norms in Banach spaces with the convex point of continuity property (CPCP). Other questions related to the existence of antiproximinal bodies are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号