首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Helix unfolding in unsolvated peptides   总被引:1,自引:0,他引:1  
The conformations of unsolvated Ac-K(AGG)(5)+H(+) and Ac-(AGG)(5)K+H(+) peptides (Ac = acetyl, A = alanine, G = glycine, and K = lysine) have been examined by ion mobility measurements over a wide temperature range (150-410 K). The Ac-K(AGG)(5)+H(+) peptide remains a globule (a compact, roughly spherical structure) over the entire temperature range, while both an alpha-helix and a globule are found for Ac-(AGG)(5)K+H(+) at low temperature. As the temperature is raised the alpha-helix unfolds. Rate constants for loss of the helix (on a millisecond time scale) have been determined as a function of temperature and yield an Arrhenius activation energy and preexponential factor of 38.2 +/- 1.0 kJ mol(-1) and 6.5 +/- 3.7 x 10(9) s(-1), respectively. The alpha-helix apparently does not unfold directly into the globule, but first converts into a long-lived intermediate which survives to a significantly higher temperature before converting. According to molecular dynamics simulations, there is a partially untwisted helical conformation that has both a low energy and a well-defined geometry. This special structure lies between the helix and globule and may be the long-lived intermediate.  相似文献   

2.
Ion mobility measurements have been used to examine helix formations in the gas phase for a series of alanine/glycine-based peptides that incorporate a glutamic acid (E) and lysine (K) at various positions along the backbone. Incorporation of an EK pair lowers the percent helix for all positions (presumably because hydrogen bonding between the backbone and the E and K side chains stabilize the nonhelical globular conformations). The largest percent helix is found when the EK pair is in an i,i+5 arrangement, which suggests that the preferred helical conformation for these peptides is a pi-helix. This conclusion is supported by comparison of cross sections deduced from the ion-mobility measurements to average cross sections calculated for conformations obtained from molecular dynamics simulations. The glutamic acid and lysine may form an ion pair that is stabilized by interactions with the helix macro-dipole.  相似文献   

3.
Ion mobility measurements have been used to examine helix formation in unsolvated glycine-based peptides containing three alanine residues. Nine sequence isomers of Ac-[12G3A]K+H(+) were studied (Ac = acetyl, G = glycine, A = alanine, and K = lysine). The amount of helix present for each peptide was examined using two metrics, and it is strongly dependent on the proximity and the location of the alanine residues. Peptides with three adjacent alanines have the highest helix abundances, and those with well-separated alanines have the lowest. The helix abundances for most of the peptides can be fit reasonably well using a modified Lifson-Roig theory. However, Lifson-Roig theory fails to account for several key features of the experimental results. The most likely explanation for the correlation between helix abundances and the number of adjacent alanines is that neighboring alanines promote helix nucleation.  相似文献   

4.
The DC electric susceptibilities of unsolvated glycine-based peptides, WGn (W = tryptophan and G = glycine) with n = 1-5, have been measured by deflection of a molecular beam in an electric field. These are the first electric deflection measurements performed on peptides. At 300 K the susceptibilities are in the range of 200-400 A(3). By far the largest contribution to the susceptibilities is from the permanent dipole moment of the peptides. The results indicate that the peptides do not have rigid conformations with fixed dipoles. Instead the dipole is averaged as the peptides explore their energy landscape. For a given WGn peptide, all molecules have almost the same average dipole, which suggests that they all explore a similar energy landscape on the microsecond time scale of the measurement. The measured susceptibilities are in good overall agreement with values calculated from the average dipole moment deduced from Monte Carlo simulations.  相似文献   

5.
Molecular beam electric deflection measurements have been used to determine electric susceptibilities for small unsolvated alanine-based peptides. The electric susceptibility provides information about the charge distribution within the peptide and can be used to distinguish between zwitterionic and canonical forms. Measured electric susceptibilities for WAn peptides (n = 1-5) are similar to those for capped Ac-WAn-NH2 peptides (which cannot form zwitterions). Susceptibilities calculated using a simulated tempering-based approach are substantially larger for the zwitterionic form than for the canonical form. The measured susceptibilities are in good agreement with those calculated for the canonical form. For the larger peptides, the lowest potential energy structure found in the simulations is hairpin-like, while the lowest free energy structure found at room temperature is extended. The zwitterionic form is constrained by intramolecular interactions which make it entropically unfavorable.  相似文献   

6.
We have used ion-mobility mass spectrometry to examine the conformations of the protonated complex formed between AcA(7)KA(6)KK and AcEA(7)EA(7), helical alanine-based peptides that incorporate glutamic acid (E) and lysine (K). Designed interactions between the acidic E and basic K residues help to stabilize the complex, which is generated by electrospray and studied in the gas phase. There are two main conformations: (1) a coaxial linear arrangement where the helices are tethered together by an EKK interaction between the pair of lysines at the C-terminus of the AcA(7)KA(6)KK peptide and a glutamic acid at the N-terminus of the AcEA(7)EA(7) peptide and (2) a coiled-coil arrangement with side-by-side antiparallel helices where there is an additional EK interaction between the E and K residues in the middle of the helices. The coiled-coil opens up to the coaxial linear structure as the temperature is raised. Entropy and enthalpy changes for the opening of the coiled-coil were derived from the measurements. The enthalpy change indicates that the interaction between the E and K residues in the middle of the helices is a weak neutral hydrogen bond. The EKK interaction is significantly stronger.  相似文献   

7.
8.
Equilibrium constants for the adsorption of the first water molecule onto a variety of unsolvated alanine-based peptides have been measured and Delta H degrees and DeltaS degrees have been determined. The studies were designed to examine the effects of conformation, charge, and composition on the propensity for peptides to bind water. In general, water adsorption occurs significantly more readily on the globular peptides than on helical ones: several of the singly charged helical peptides were not observed to adsorb a water molecule even at -50 degrees C. These results place a limit on the free energy change for interaction between a water molecule and the helical peptide group. Molecular dynamics simulations reproduce most of the main features of the results. The ability to establish a network of hydrogen bonds to several different hydrogen-bonding partners emerges as a critical factor for strong binding of the water molecule. Whether the charge site is involved in water adsorption depends on how well it is shielded. Peptides containing a protonated histidine bind water much more strongly that those containing a protonated lysine because the delocalized charge on histidine is difficult to shield. The entropy change for adsorption of the first water molecule is correlated with the enthalpy change.  相似文献   

9.
Ferrocene peptide conjugates display an array of structural features including helical ferrocene based chirality and a number of different intramolecular hydrogen bonding patterns. In this tutorial review we present a rigorous nomenclature for these systems, followed by a section that summarises and categorises the structures known to date. The issues discussed herein are of general relevance for all metallocene-based chiral transition metal catalysts and peptide turn mimetics.  相似文献   

10.
Ion mobility measurements have been used to examine the conformations present for unsolvated Ac-(AG)(7)A+H(+) and (AG)(7)A+H(+) peptides (Ac = acetyl, A = alanine, and G = glycine) over a broad temperature range (100-410 K). The results are compared to those recently reported for Ac-A(4)G(7)A(4)+H(+) and A(4)G(7)A(4)+H(+), which have the same compositions but different sequences. Ac-(AG)(7)A+H(+) shows less conformational diversity than Ac-A(4)G(7)A(4)+H(+); it is much less helical than Ac-A(4)G(7)A(4)+H(+) at the upper end of the temperature range studied, and at low temperatures, one of the two Ac-A(4)G(7)A(4)+H(+) features assigned to helical conformations is missing for Ac-(AG)(7)A+H(+). Molecular dynamics simulations suggest that the different conformational preferences are not due to differences in the stabilities of the helical states, but differences in the nonhelical states: it appears that Ac-(AG)(7)A+H(+) is more flexible and able to adopt lower energy globular conformations (compact random looking three-dimensional structures) than Ac-A(4)G(7)A(4)+H(+). The helix to globule transition that occurs for Ac-(AG)(7)A+H(+) at around 250-350 K is not a direct (two-state) process, but a creeping transition that takes place through at least one and probably several intermediates.  相似文献   

11.
Insufficient oral bioavailability is considered as a key limitation for the widespread development of peptides as therapeutics. While the oral bioavailability of small organic compounds is often estimated from simple rules, similar rules do not apply to peptides, and even the high oral bioavailability that is described for a small number of peptides is not well understood. Here we present two highly Caco-2 permeable template structures based on a library of 54 cyclo(-D-Ala-Ala(5)-) peptides with different N-methylation patterns. The first (all-trans) template structure possesses two β-turns of type II along Ala(6)-D-Ala(1) and Ala(3)-Ala(4) and is only found for one peptide with two N-methyl groups at D-Ala(1) and Ala(6) [(NMe(1,6)]. The second (single-cis) template possesses a characteristic cis peptide bond preceding Ala(5), which results in type VI β-turn geometry along Ala(4)-Ala(5). Although the second template structure is found in seven peptides carrying N-methyl groups on Ala(5), high Caco-2 permeability is only found for a subgroup of two of them [NMe(1,5) and NMe(1,2,4,5)], suggesting that N-methylation of D-Ala(1) is a prerequisite for high permeability of the second template structure. The structural similarity of the second template structure with the orally bioavailable somatostatin analog cyclo(-Pro-Phe-NMe-D-Trp-NMe-Lys-Thr-NMe-Phe-), and the striking resemblance with both β-turns of the orally bioavailable peptide cyclosporine A, suggests that the introduction of bioactive sequences on the highly Caco-2 permeable templates may result in potent orally bioavailable drug candidates.  相似文献   

12.
Time-resolved measurements were conducted to relate the fluorescence lifetimes of dye-derivatized polypeptides to local conformational dynamics in trapped, unsolvated peptide ions. This research was performed to better understand the intramolecular interactions leading to the observed increase of fluorescence quenching with temperature and, in particular, how this quenching is related to conformational fluctuations. Dye-derivatized polyproline ions, Dye-[Pro] n -Arg (+)-Trp, are formed by electrospray ionization and trapped in a variable-temperature quadrupole ion trap where they are exposed to a pulsed laser which excites fluorescence. Lifetime data exhibit fluorescence quenching as a result of an interaction between the dye and tryptophan (Trp) side chain. This result is consistent with solution measurements performed for comparison. The lifetime temperature dependence is closely fit over the range 150-463 K by an Arrhenius model of the ensemble averaged quenching rate, k q. Model fits of the measured lifetimes yield a frequency prefactor of approximately 10 (11) s (-1) for k q characteristic of collective motions of the side chains identified in molecular dynamics (MD) simulations. The data fits also yield activation barriers of approximately 0.3 eV, which are comparable to intramolecular electrostatic interactions calculated between the unshielded charge on the Arg residue and the dye. As a result, the quenching rate appears to be determined by the rate of conformational fluctuations and not by the rate of a specific quenching mechanism. The peptide sequence of Dye-Trp-[Pro] n -Arg (+) was also studied and identified a dependence of the quenching rate on the electrostatic field in the vicinity of the dye, Trp pair. Molecular dynamics simulations were performed over the range of experimental measurements to study trajectories relevant to the quenching interaction. The MD simulations indicate that as the temperature is increased, conformational fluctuations in the presence of strong electrostatic fields of the charged Arg (+) residue can result in both (a) an increased number of dye and Trp separations <8 A and (b) increased exothermicity for electron transfer reactions between the dye and Trp. Consequently, the MD simulations are consistent with increased fluorescence quenching with temperature resulting from the occurrence of conformers having specific positions of the dye, Trp, and Arg (+). As a result, the fluorescence lifetime provides a local probe of conformational fluctuations averaged over the ion ensemble.  相似文献   

13.
Conformational change in unsolvated Trp-cage protein probed by fluorescence   总被引:3,自引:0,他引:3  
We report the first direct measurements of the unfolding of a protein, Trp-cage, in the gas phase using laser-induced fluorescence of protein ions in a heated quadrupole ion trap. The changes in enthalpy and entropy associated with the observed conformational change are obtained by fitting a two-state model of protein unfolding to the fluorescence intensities plotted versus temperature. The enthalpy and entropy changes for the 2+ and 3+ charge states are greater than the values measured in solution and depend on charge state.  相似文献   

14.
Ion mobility measurements and molecular dynamics simulations were performed for unsolvated A4G7A4 + H+ and Ac-A4G7A4 + H+ (Ac = acetyl, A = alanine, G = glycine) peptides. As expected, A4G7A4 + H+ adopts a globular conformation (a compact, random-looking, three-dimensional structure) over the entire temperature range examined (100-410 K). Ac-A4G7A4 + H+ on the other hand is designed to have a flat energy landscape with a marginally stable helical state. This peptide shows at least four different conformations at low temperatures (<230 K). The two conformations with the largest cross sections are attributed to - and partial -helices, while the one with the smallest cross section is globular. The other main conformation may be partially helical. Ac-A4G7A4 + H+ becomes predominantly globular at intermediate temperatures and then becomes more helical as the temperature is raised further. This unexpected behavior may be due to the helix having a higher vibrational entropy than the globular state, as predicted by some recent calculations (Ma, B.; Tsai, C.-J.; Nussinov, R. Biophys. J. 2000, 79, 2739-2753).  相似文献   

15.
Raman and surface-enhanced Raman spectroscopies (SERS) are potentially important tools in the characterization of biomolecules such as proteins and DNA. In this work, SERS spectra of three cysteine-containing aromatic peptides: tryptophan-cysteine, tyrosine-cysteine, and phenylalanine-cysteine, bound to Au nanoshell substrates, were obtained, and compared to their respective normal Raman spectra. While the linewidths of the SERS peaks are significantly broadened (up to 70%), no significant spectral shifts (<6 cm (-1)) of the major Stokes modes were observed between the two modalities. We show that the Raman and SERS spectra of penetratin, a cell-penetrating peptide oligomer, can be comprised quite reliably from the spectra of its constituent aromatic amino acids except in the backbone regions where the spectral intensities are critically dependent on the length and conformations of the probed molecules. From this study we conclude that, together with protein backbone groups, aromatic amino acid residues provide the overwhelmingly dominant features in the Raman and SERS spectra of peptides and proteins when present. It follows that the Raman modes of these three small constructed peptides may likely apply to the assignment of Raman and SERS features in the spectra of other peptides and proteins.  相似文献   

16.
High-temperature ion mobility measurements have been performed for alpha-helical Ac-A15K+H+ and globular Ac-KA15+H+ peptides. The alpha-helical and globular conformations do not melt into random coils as the temperature is raised. Instead, both conformations survive to the point where the peptide signals vanishes due to fragmentation. This occurs at 600 K for the globular Ac-KA15+H+ peptide and at 725 K for the alpha-helical Ac-A15K+H+. For the helical Ac-A15K+H+ peptide it appears that fragmentation is triggered by disruption of the helical conformation.  相似文献   

17.
The selective activation of a particular bond in a molecule has always been a desideratum in chemical synthesis. This Feature Article focuses on studying the mechanisms operative in the activation of carbon-fluorine bonds beyond solvated systems, i.e., on surfaces and in the gas phase. Side glances to reactions in solutions, however, are incorporated when appropriate.  相似文献   

18.
This note describes the design, synthesis, and conformational studies of a novel hybrid foldamer that adopts a definite compact, three-dimensional structure determined by a combined effect of the special conformational properties of the foldamer constituents. The striking feature of this de novo designed foldamer is its ability to display periodic gamma-turn conformations stabilized by intramolecular hydrogen bonds. Conformational investigations by single-crystal X-ray studies, solution-state NMR, and ab initio MO theory at the HF/6-31G* level strongly support the prevalence of gamma-turn motifs in both the di- and tetrapeptide foldamers, which are presumably stabilized by bifurcated hydrogen bonds in the solid and solution states. The strategy disclosed herein for the construction of hybrid foldamers with periodic gamma-turn motifs has the potential to significantly augment the conformational space available for foldamer design with diverse backbone structures and conformations.  相似文献   

19.
20.
Multidimensional ion mobility spectrometry techniques (IMS-IMS and IMS-IMS-IMS) combined with mass spectrometry are used to study structural transitions of ubiquitin ions in the gas phase. It is possible to select and activate narrow distributions of compact and partially folded conformation types and examine new distributions of structures that are formed. Different compact conformations unfold, producing a range of new partially folded states and three resolvable peaks associated with elongated conformers. Under gentle activation conditions, the final populations of the three elongated forms depend on the initial structures of the selected ions. This requires that some memory of the compact state (most likely secondary structure) is preserved along the unfolding pathway. Activation of selected, partially folded intermediates (formed from specific compact states) leads to elongated state populations that are consistent with the initial selected compact form-evidence that intermediates not only retain elements of initial structure but also are capable of transmitting structure to final states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号