首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 132 毫秒
1.
A method is described for the determination of residues of the illegal antibiotic chloramphenicol (CAP) in milk powders. The analyte is quantified by liquid chromatography coupled to electrospray ionisation tandem mass spectrometry (LC-ESI-MS-MS) operating in negative ion multiple reaction monitoring mode (MRM) after a liquid-liquid extraction followed by a clean-up step on solid phase extraction (SPE) cartridge. Because of the presence of two chlorine atoms in the CAP molecule, four specific transition reactions of CAP were monitored by MS-MS in selecting m/z 321 --> 257, 321 --> 152 (35Cl2) and m/z 323 --> 257, 323 --> 152 (37Cl35Cl). Two calibration curves were constructed by plotting the area ratio of m/z 321 --> 152 versus 326 --> 157 and m/z 321 --> 257 versus 326 --> 262 against their corresponding amount ratio. Indeed, even if m/z 321 --> 152 was found to give a higher MS-MS response (calibration curve used by default), an interfering chemical substance was sometimes observed for some milk extracts and not for the transition m/z 321 --> 257. The quantitation method was validated according to the European Union (EU) criteria for the analysis of veterinary drug residues at 0.1, 0.2 and 0.5 microg/kg concentration levels using d5-CAP as internal standard. The decision limit (CCalpha) and detection capability (CCbeta) of CAP in milk were calculated for m/z 321 --> 152 at 0.02 microg/kg and 0.03 microg/kg, respectively, and for m/z 321 --> 257 at 0.02 microg/kg and 0.04 microg/kg, respectively. At the lowest fortification level (i.e. 0.1 microg/kg), repeatability and within-laboratory reproducibility were calculated for m/z 321 --> 257 both at 0.02 microg/kg and for m/z 321 --> 152 at 0.03 and 0.05 microg/kg, respectively. Moreover, the measurement of uncertainty of the analytical method was calculated at the same spiking levels and falls within the precision values of the within-laboratory reproducibility. This method can be applied to several types of milk powders (e.g. full cream, skim) and can serve as a monitoring tool to avoid that unacceptable levels of residues of CAP enter the food chain.  相似文献   

2.
Rodziewicz L  Zawadzka I 《Talanta》2008,75(3):846-850
A simple and rapid liquid chromatography tandem mass spectrometry (LC-ESI-MS-MS) confirmation method for the analysis chloramphenicol (CAP) in milk powder has been developed. Samples were extracted by using liquid-liquid extraction steps with ethyl acetate. Lipids were removed using hexsan. LC separation was achieved by using a Phenomenex Luna C-18 column and acetonitryle-water as a mobile phase. The mass spectrometer was operated in multiple reaction monitoring mode (MRM) with negative electro-spray interface (ESI-). The four transitions were monitored m/z 321-->257, 321-->194, 321-->152, 326-->157 (IS) and for quantification, the transition m/z 321-->152 was chosen. Validation of the method was done according to criteria of Decision Commission No 2002/657 EC. Validation includes the determination of specification, linearity, precision (within- and between-day), accuracy, decision limit (CC alpha) and detection capability (CC beta). Samples were fortified at CAP levels 0.30, 0.45 and 0.60 microg/kg with CAP-5d as internal standard. The precision within-day (RSD%) was lower than 12% and accuracy (RE%) ranged from -9.8 to -3.7%. The precision between-day (RSD%) was less than 15%. The limit of decision (CC alpha) and detection capability (CC beta) for milk powder 0.09 and 0.11 microg/kg. Value CC alpha and CC beta were calculated for the 321-->152 ion transition. This method has been successfully used for routine analysis.  相似文献   

3.
A liquid chromatography/tandem mass spectrometry (LC/MS/MS) method is described for the extraction, cleanup, determination, and confirmation of chloramphenicol (CAP) in cooked crab meat. The method involves pulverization of cooked crab meat with dry ice; extraction of the CAP into ethyl acetate (EtOAc); evaporation (by N2) of the EtOAc; addition of methanol, aqueous NaCl, and heptane; extraction of the lipids into the heptane, followed by extraction of the aqueous phase with EtOAc; evaporation (by N2) of the EtOAc; dissolution into methanol-water; filtration; and separation/detection/confirmation using LC/MS/MS. Crab meat was fortified at 0.25, 0.50, and 1.0 ng/g (ppb) chloramphenicol. Average absolute recoveries were 67, 84, and 86%, respectively, with relative standard deviation values all less than 1%. Four daughter ions (m/z 152, 176, 194, and 257) were monitored off the m/z 321 precursor ion. Determination was based on a standard curve using the peak areas of the m/z 152 daughter ion (the base peak) for standard solutions equivalent to 0.10, 0.20, 0.50, and 1.0 ppb in tissue (made with control crab extract). A set of 6 matrix controls (unfortified crab meat) was also analyzed, in which no chloramphenicol was detected. For identification purposes, the ion ratios (of each daughter ion versus the base daughter ion) of the fortified crab versus those of the chloramphenicol standards agreed within 10% (relative) at fortified chloramphenicol concentrations of 0.25-1.0 ppb.  相似文献   

4.
An existing method for chloramphenicol (CAP) determination in shrimp using a gas chromatograph with electron capture detector was adapted for confirmation of CAP with a liquid chromatograph interfaced to a triple quadrupole mass spectrometer. CAP residues are extracted from tissue with ethyl acetate, isolated via liquid-liquid extraction, and concentrated by evaporation. Extracts are chromatographed by using a reversed-phased column and analyzed by electrospray negative mode tandem mass spectrometry. Four product ions (m/z 152, 176, 194, and 257) of precursor m/z 321 were monitored. Moving from gas chromatography to liquid chromatography-tandem mass spectrometry improved the sensitivity of the method greatly, enabling reliable confirmation of CAP residues at 0.3 microg/kg (ppb). The method meets confirmation criteria recommended by the U.S. Food and Drug Administration and 4-point identification criteria established by the European Union. With slight modifications to accommodate different equipment, the method was validated in 3 laboratories.  相似文献   

5.
A simple and rapid method for the determination and confirmation of chloramphenicol in several food matrices with LC-MS/MS was developed. Following addition of d5-chloramphenicol as internal standard, meat, seafood, egg, honey and milk samples were extracted with acetonitrile. Chloroform was then added to remove water. After evaporation, the residues were reconstituted in methanol/water (3+4) before injection. The urine and plasma samples were after addition of internal standard applied to a Chem Elut extraction cartridge, eluted with ethyl acetate, and hexane washed. Also these samples were reconstituted in methanol/water (3+4) after evaporation. By using an MRM acquisition method in negative ionization mode, the transitions 321-->152, 321-->194 and 326-->157 were used for quantification, confirmation and internal standard, respectively. Quantification of chloramphenicol positive samples regardless of matrix could be achieved with a common water based calibration curve. The validation of the method was based on EU-decision 2002/657 and different ways of calculating CCalpha and CCbeta were evaluated. The common CCalpha and CCbeta for all matrices were 0.02 and 0.04 microg/kg for the 321-->152 ion transition, and 0.02 and 0.03 microg/kg for the 321-->194 ion transition. At fortification level 0.1 microg/kg the within-laboratory reproducibility is below 25%.  相似文献   

6.
We have observed unusual mass spectra of chloramphenicol (CAP) in solutions of methanol or acetonitrile showing intense ions at m/z 297, m/z 311, m/z 325 and m/z 339. The observed ions were different from those which are traditionally observed in the full scan ESI mass spectra of CAP with ions of m/z 321, m/z 323 and m/z 325. We have evidence to show that this process starts with offline methylation of CAP in solutions of methanol or acetonitrile to give m/z 339. Investigations using nuclear magnetic resonance (NMR) spectroscopy showed that there is a methylene group somewhere within the CAP molecule but not attached to any of the carbon atoms when the CAP is dissolved in methanol or acetonitrile before infusion into the mass spectrometer. The possible locations of attachment were speculated to be the electronegative atoms apart from the chlorine atoms due to valence considerations. The methylene group is attached to the nitrogen atom and forms a bond as observed in the MS/MS spectra of m/z 297, m/z 311, m/z 325 and m/z 339 which give m/z 183 as the base peak in all cases. Further experiments showed that there is cleavage of the methylated CAP molecule followed by cluster ion formation involving addition of methylene groups to the CAP fragment with m/z 183 to produce ions of m/z including m/z 297, m/z 311, m/z 325 and m/z 339. This process occurs in the mass spectrometer in the region housing the tube lens and is triggered when the ions are accelerated through this region by application of a negative tube lens offset voltage. This region affords collision of the charged droplets with a collision gas in this case nitrogen to strip the droplets of their solvent molecules. Experiments to follow the intensities of m/z 183, m/z 311, m/z 321, m/z 323, m/z 325 and m/z 339 as the tube lens offset voltage was varied were done in which the intensities of m/z 311, m/z 325 and m/z 339 were observed to be at their peak when the tube lens offset voltage was set at -40 V. When the tube lens offset voltage is swung to +40 V, thus decelerating the ions through the capillary skimmer region via the tube lens, the traditionally observed spectra with m/z 321, m/z 323 and m/z 325 were observed.  相似文献   

7.
建立了气相色谱-负离子化学电离源质谱同时测定动物组织中氯霉素(CAP)、甲砜霉素(TAP)和氟甲砜霉素(FF)残留量的方法。样品用乙酸乙酯提取,正己烷分配去脂肪,再用Florisil柱进一步净化,甲苯作为反应介质,用N,O-双(三甲基硅基)三氟乙酰胺(BSTFA)-三甲基氯硅烷(TMCS)(体积比为99∶1)进行硅烷化处理,用间硝基氯霉素(m-CAP)作为内标进行测定。CAP的检测限可达到0.03 μg/kg,TAP和FF的检测限可达到0.2 μg/kg;上述3种药物的标准曲线的线性相关系数均大于0.99。CAP,FF和TAP的批内测定的精密度(以相对标准偏差表示)依次为5.5%,10.4%和8.8%;批间测定的精密度依次为7.4%,20.7%和19.1%。回收率为80.0%~111.5%,相对标准偏差为1.2%~15.4%。该方法前处理步骤简单,处理后杂质干扰少,灵敏度高,适用性强,可用于猪肉及禽类、水产品等多种动物组织中氯霉素类药物残留的检测。  相似文献   

8.
A liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the determination of residues of the anaesthetic tricaine mesilate (MS222) in fish tissues is described. Residues were extracted from homogenized tissues with McIllvaine buffer/methanol and purified over a C18 solid-phase extraction column followed by LC-MS/MS analysis. In the multiple-reaction monitoring mode of the mass spectrometer, chromatograms were recorded by monitoring the m/z 166-->m/z 138 and m/z 166-->m/z 94 transitions for quantification and confirmation of the residues in the finfish matrix, respectively. Recoveries were in the range of 67%+/-10% (n=6) for tilapia at 2 microg kg(-1), 95%+/-7% (n=6) at 2 microg kg(-1) in salmon and 92%+/-3% (n=5) for trout at 2.5 microg kg(-1). The limits of detection were 0.5, 0.6 and 0.6 microg kg(-1) in trout, salmon and tilapia, respectively. No residues of tricaine were found in eight sampled aquacultured fish (salmon and trout) bought from the local market.  相似文献   

9.
Chloramphenicol (CAP) is extracted from an aqueous dilution of honey using ethyl acetate. The extracts are evaporated and redissolved in water. CAP is then extracted from the aqueous solutions using reversed-phase solid-phase extraction cartridges. CAP is eluted from the reversed-phase cartridges with acetonitrile-water and re-extracted into ethyl acetate. The ethyl acetate is evaporated, and the residue is reconstituted in an aqueous solution. Extracts are chromatographed using a reversed-phase column and analyzed by electrospray negative mode tandem mass spectrometry. Four product ions of precursors m/z 321 or 323 are monitored. The method meets confirmation criteria recommended by the U.S. Food and Drug Administration and 4-point identification criteria established by the European Union. With slight modifications to accommodate different equipment, the method was validated in 2 laboratories.  相似文献   

10.
A method is described for the identification and quantitative determination of 3,5-dinitrosalicylic acid hydrazide (DSH), the marker residue of nifursol metabolites in poultry (turkey, broiler) muscle and liver tissue. The method is based on the acid-catalysed hydrolysis of tissue-bound metabolites to free DSH and in situ derivatisation with 2-nitrobenzaldehyde to the corresponding nitrophenyl derivative NPDSH. A structural analogue of DSH, 4-hydroxy-3,5-dinitrobenzoic acid hydrazide (HBH) was synthesised to serve as an internal standard. The analytes were isolated from the matrix by liquid-liquid extraction with ethyl acetate. Determination was performed by LC-MS/MS with negative electrospray ionisation. The [M - H](+) ions of NPDSH and NPHBH at m/z 374 were fragmented by collision induced dissociation (CID) producing transition ions at m/z 182, 183 and 226. The transition ions at m/z 182 and 226 were selected for monitoring of NPDSH while the transition ion at m/z 183 was selected for NPHBH. The method has been validated according to the EU criteria of Commission Decision 2002/657/EC at 0.5, 1.0 and 1.5 microg kg(-1) in muscle and liver tissue. A decision limit (CC(alpha)) was obtained of 0.04 and 0.025 microg kg(-1) in muscle and liver, respectively. Similarly a detection capability (CC(beta)) was obtained of 0.10 and 0.05 microg kg(-1) in muscle and liver, respectively. The introduction of HBH as an internal standard did not lead to a significant improvement of the quantitative performance of the method. In fact for liver better performance characteristics were obtained when the IS was not taken into account. Nevertheless, as a qualitative marker for recovery, HBH could still be very useful in the analysis of unknown samples.  相似文献   

11.
A method has been developed for the simultaneous quantification of metformin (I) and glipizide (II) in human plasma. It is based on high-performance liquid chromatography with electrospray ionization tandem mass (LC-ESI-MS/MS) spectrometric detection in positive ionization mode. Phenformin (III) and gliclazide (IV) were used as internal standards for I and II, respectively. The MS/MS detection was performed in multiple reaction monitoring (MRM) mode. The precursor-product ion combinations of m/z 130 --> 71, 446 --> 321, 206 --> 60 and 324 --> 127 were used to quantify I, II, III and IV, respectively. This method was validated in the concentration ranges of 0.02-4 microg/mL for I and 0.004-0.8 microg/mL for II. It was utilized to support a clinical pharmacokinetic study after single dose oral administration of a combination of I and II.  相似文献   

12.
A rapid, sensitive and selective method has been developed and validated for the analysis of the contaminant ethyl carbamate (EC) in bread products at the part-per-billion level. The new procedure uses positive ion chemical ionisation (PICI) and tandem mass spectrometry (MS/MS), combined with gas chromatography (GC), on a 'bench-top' triple-quadrupole mass spectrometer. Ammonia was the PICI reagent gas of choice because of its ability to produce abundant [M+H]+ and [M+NH4]+ ions from EC and deuterium-labelled EC (LEC) used as an internal standard. For identification and quantification, selected reaction monitoring (SRM) was used to follow the precursor-to-product ion transitions of m/z 107 --> 90, m/z 107 --> 62 and m/z 90 --> 62 for EC, as well as m/z 112 --> 63 for the LEC internal standard. The limits of detection and quantification were 0.6 and 1.2 microg kg(-1), respectively, and the recovery of the method was 101 +/- 10% at 10 microg kg(-1) and 98 +/- 5% at 100 microg kg(-1). The precision of the method, established under conditions of intermediate reproducibility, did not exceed a relative standard deviation of 7%. The quantitative performance of the new GC/PICI-SRM procedure compared favourably with that of a reference method based on GC/MS and selected ion monitoring (correlation coefficient, r = 0.997). However, the new method had the advantages of reduced sample preparation time, improved sensitivity and unambiguous identification of EC at all concentrations. Application of the new method to the analysis of 50 UK breads showed that levels of EC ranged from 0.6 to 2.3 microg kg(-1) in retail products and from 3.1 to 12.2 microg kg(-1) for breads prepared using domestic breadmaking machines (dry weight basis). Toasting bread in a domestic toaster led to increases of between two- and three-fold in mean EC concentrations.  相似文献   

13.
A method is described using LC-MS for the detection of the mycotoxins fusaproliferin (FUS) and beauvericin (BEA) in cultures of Fusarium subglutinans and in naturally contaminated maize. Protonated molecular ion signals for FUS and BEA were observed at m/z 445 and m/z 784, respectively. Collision induced dissociation of the readily dehydrated protonated molecular ion of the sesterterpene FUS (m/z 427) led to the loss of another water molecule (m/z 409) and acetic acid (m/z 385), while the cyclic lactone trimer BEA fragmented to yield the protonated dimer (m/z 523) and monomer (m/z 262), respectively. Detection of FUS was best performed in the MS-MS mode while BEA displayed a stronger signal in the MS mode. The on-column instrumental detection limits for pure FUS and BEA were found to be 2 ng and 20 pg (S/N=2) while those in naturally contaminated maize were 1 microg/kg and 0.5 microg/kg, respectively. Five South African strains of F. subglutinans were analyzed following methanol extraction of which four produced FUS at levels between 330 mg/kg and 2630 mg/kg while only three produced BEA at levels between 140 mg/kg and 700 mg/kg. Application of this method to naturally contaminated maize samples from the Transkei region of South Africa showed FUS at levels of 8.8-39.6 microg/kg and BEA at 7.6-238.8 microg/kg.  相似文献   

14.
A sensitive, specific, and reliable liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed for detection and identification of zeranol in chicken or rabbit liver. A homogenized liver sample was hydrolyzed with beta-glucuronidase/arylsulfatase, and the hydrolysate was extracted with ethyl ether. The supernatant was evaporated to dryness, and the residue was dissolved in chloroform and re-extracted with sodium hydroxide. After acidification, the extract was cleaned up on a C18 solid-phase extraction cartridge and analyzed by electrospray LC-MS/MS in the negative ion mode. The multiple reaction monitoring transition from both m/z 321 to 277 and m/z 321 to 303 was monitored for confirmation, and the product ion of 277 was used for quantitation. Separation was performed on a Waters XTettra C18 column (50 x 2.1 mm, 3.5 microm) combined with a safeguard column (Symmetry C18, 20 x 3.9 mm, 5 microm), using a gradient elution with acetonitrile and 20 mM ammonium acetate. Calibration curves were prepared and good linearity was achieved over the concentration ranges tested. For all liver samples fortified at 3 different levels of 1, 5, and 50 microg/kg, the overall recoveries and relative standard deviations were in the range of 61-90 and 8-13%, respectively. The limit of quantitation based on the assay validation was 1 microg/kg. The method had been used on a routine basis for detection and identification of zeranol in liver samples.  相似文献   

15.
A quantitative liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method was developed for the analysis of the explosive, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). In negative ionization mode, HMX forms an acetate adduct ion [M + CH(3)COO](-), m/z 355, in the presence of a small amount of acetic acid in the mobile phase. The ESI collision-induced dissociation (CID) spectrum of m/z 355 was acquired and the transitions m/z 355 --> 147 and m/z 355 --> 174 were chosen for the determination of HMX in samples. Using this quantification technique, the method detection limit was 1.57 microg/L and good linearity was achieved in the range 5-500 microg/L. This method will help to unambiguously analyze environmentally relevant concentrations of HMX.  相似文献   

16.
A sensitive liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method for the quantitative determination of ochratoxin A (OTA) in kidney samples was developed. Ochratoxin B (OTB) was used as internal standard. Extraction of homogenized kidney samples was done by adding a chloroform/phosphoric acid mixture. Due to restriction of the sample size, less chloroform could be used than in previously described methods. Two different columns for clean-up were compared: strong anion exchange (Bond Elut SAX) and Extrelut NT columns. The high-performance liquid chromatography (HPLC) was used with gradient elution consisting of variable mixtures of formic acid (0.3%) in acetonitrile and formic acid (0.3%) in water. The mass spectrometer was operated in the positive ESI mode using multiple reaction monitoring. For OTA the precursor ion was m/z 404 while the product ions were at m/z 239 and m/z 341. For OTB the precursor ion was m/z 370 while the product ions were at m/z 205 and at m/z 324. A calibration curve of fortified kidney samples was used to quantify OTA. Method validation was performed according to Commission Decision 2002/657/EC. Decision limit (CCalpha), detection capability (CCbeta), precision, bias, trueness, specificity and measurement uncertainty were determined. In general, the best results were obtained using SAX clean-up. CCalpha and CCbeta were 0.11 and 0.25 microg kg(-1), respectively. Within-laboratory reproducibility (% CV) was 9, 9, and 5% for OTA-fortified kidney samples of 0.5, 1, and 2.5 microg kg(-1), respectively. Trueness (%) was 75, 69, and 57% for OTA-fortified kidney samples at 0.25, 0.5, and 1 microg kg(-1), respectively. Measurement uncertainty and expanded uncertainty were 14.85 and 29.70%, respectively. All criteria as laid down in Commission Decision 2002/657/EC were fulfilled. Therefore, this LC/ESI-MS/MS method can be used to monitor kidneys for OTA in the framework of Council Directive No. 96/23/EC.  相似文献   

17.
A high-performance liquid chromatographic method with UV detection has been developed for the determination of iguratimod (T-614) in rat plasma. Plasma was precipitated with acetonitrile after the addition of the internal standard (IS), N-[4-(2-formylaminoacetyl)-5-methoxy-2-phenoxyphenyl]-methanesulfonamide. The chromatographic separation was achieved on a reversed-phase C(18) column with the mobile phase acetonitrile-acetic acid aqueous solution, pH 4.5 (40:60, v/v), at a flow rate of 1 mL/min, and the UV detection wavelength was set at 257 nm. The calibration curve was linear over the range 0.10-50.0 microg/mL, and the lower limit of quantification was 0.10 microg/mL. The intra- and inter-day relative standard deviations were all less than 11.5%. The method has been successfully applied to study the pharmacokinetics of iguratimod in rats. A single 10 mg/kg dose of iguratimod was given to the rats by intragastric administration. The mean maximum plasma concentration of iguratimod for the six rats was 14.5 microg/mL, and the mean elimination half-life of iguratimod was 4.0 h.  相似文献   

18.
19.
The use of chloramphenicol (CAP)--a highly effective broad-spectrum antibiotic used in animal husbandry--is banned in many countries. Therefore, a very low minimum required performance limit (MRPL) of 0.3 microg/kg CAP in meat for human consumption has been defined. Analytical methods capable of quantifying and confirming such low residue levels require sophisticated instrumentation. Preferably sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) or gas chromatography/mass spectrometry (GC/MS) methods have been used. This paper suggests the use of sub-2 microm particulate high-performance liquid chromatography (HPLC) columns to gain additional sensitivity and improve resolution as well as speed. Depending on the operating conditions, higher chromatographic resolution and speed can be obtained at the price of a significantly increased operating pressure, requiring dedicated LC equipment. A 3-4-fold overall improvement of the signal-to-noise ratio for CAP was obtained compared to more classical 5 microm particulate HPLC columns. The proposed analytical methodology includes an enzymatic digestion, which liberates glucuronide-bound CAP from kidney tissue. The extracts obtained after an Extrelut clean-up are sufficiently pure to permit routine injection of biological samples into the sub-2 microm particulate HPLC column, without observing rapid deterioration of peak shape or column clogging problems. The time for one chromatographic run was 4.2 min. The described method was validated for two particularly difficult matrices (kidney and honey). Decision limits (CC alpha) were 0.007 microg/kg (honey) und 0.011 microg/kg (kidney), which are significantly below the current MRPL.  相似文献   

20.
A method is described for the quantitative confirmation of 4,4'-dinitrocarbanilide (DNC), the marker residue for nicarbazin in chicken liver and eggs. The method is based on LC coupled to negative ion electrospray MS-MS of tissue extracts prepared by liquid-liquid extraction. The [M-H]- ion at m/z 301 is monitored along with two transition ions at m/z 137 and 107 for DNC and the [M-H]- ion at m/z 309 for the internal standard, d8-DNC. The method has been validated according to the new EU criteria for the analysis of veterinary drug residues at 100, 200 and 300 microg kg(-1) in liver and at 10, 30 and 100 microg kg(-1) in eggs. Difficulties concerning the application of the new analytical limits, namely the decision limit (CCalpha) and the detection capability (CCbeta) to the determination of DNC in both liver and eggs are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号