首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The local structure of titanium in tektites from six strewn fields was studied by Ti K‐edge X‐ray absorption near edge structure (XANES) and extended X‐ray absorption fine structure (EXAFS) in order to provide quantitative data on Ti—O distance and Ti coordination number. The titanium in tektites possessed different coordination environment types. XANES spectra patterns revealed resemblance to high‐temperature TiO2–SiO2 glass and TiO2 anatase. All samples showed that the valence of Ti is 4+. Based on the Ti—O distances, coordination numbers and radial distribution function determined by EXAFS analyses, the tektites were classified into three types: type I, Ti occupies a four‐coordinated tetrahedral site with Ti—O distances of 1.84–1.79 Å; type II, Ti occupies a five‐coordinated trigonal bipyramidal or tetragonal pyramidal site with Ti—O distances of 1.92–1.89 Å; type III, Ti occupies a six‐coordinated octahedral site with Ti—O distances of 2.00–1.96 Å. Although Ti occupies the TiO6 octahedral site in most titanium minerals under ambient conditions, some tektites have four‐ and five‐coordinated Ti. This study indicated that the local structure of Ti might change in impact events and the following stages.  相似文献   

2.
X‐ray absorption fine structure spectra have been investigated at the K‐edge of copper in copper(II) salen/salophen complexes: [Cu(salen)] (1), [Cu(salen)CuCl2].H2O (2), [Cu(salophen)] (3) and [Cu(salophen) CuCl2].H2O (4), where salen2? = N,N′‐ethylenebis (salicylidenaminato); salophen2? = o‐phenylenediaminebis(salicylidenaminato). Complexes 1 and 3 are supposed to have one type of copper centers (called (Cu1)) and complexes 2 and 4 two types of copper centers (called (Cu1) and (Cu2)) having different coordination environments and geometries. A theoretical model has been generated using the available crystallographic data of complex 1 and it has been used for analysis of the extended X‐ray absorption fine structure (EXAFS) data of the four complexes to obtain the structural parameters for (Cu1) center. For this center, the obtained Cu–Cu distance (3.2 Å) verifies the binuclear nature of all the complexes. For determining the coordination geometry around (Cu2) center in 2 and 4, a theoretical model has been generated using the crystal structure of a Cu(II) complex, [Cu(C16H12N2O2Cl2)]. This theoretical model has been fitted to the EXAFS data of 2 and 4 to obtain the structural parameters for (Cu2) center. The present analysis shows that (Cu1) center has square pyramidal geometry involving 2N and 3O donor atoms, whereas (Cu2) center has distorted tetrahedral geometry with 2O and 2Cl donor atoms. The values of the chemical shifts and presence of typical Cu(II) X‐ray absorption near‐edge spectroscopy features suggest that copper is in the +2 oxidation state in all these complexes. The intensity of ls → 3d pre‐edge feature has been used to investigate the geometry and binuclear nature of the complexes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Speciation of copper in a copper‐rich chemical‐mechanical polishing sludge during electrokinetic treatment has been studied by in situ extended X‐ray absorption fine structure (EXAFS) and X‐ray absorption near‐edge structure (XANES) spectroscopy. The least‐squares‐fitted XANES spectra indicate that the main copper species in the sludge are Cu(OH)2 (74%), nanosize CuO (20–60 nm) (13%) and CuO (>100 nm) (13%). The average bond distance and coordination number (CN) of Cu—O are 1.96 Å and 3.5, respectively. Under electrokinetic treatment (5 V cm?1) for 120 min, about 85% of the copper is dissolved in the electrolyte, 13% of which is migrated and enriched on the cathode. Notably the copper nanoparticles in the sludge can also migrate to the cathode under the electric field. By in situ EXAFS, it is found that during the electrokinetic treatment the bond distance and CN of Cu—O are increased by 0.1 Å and 0.9, respectively.  相似文献   

4.
Time‐resolved X‐ray absorption spectroscopy (TR‐XAS), based on the laser‐pump/X‐ray‐probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR‐XAS data analysis is generally performed on the laser‐on minus laser‐off difference spectrum. Here, a new analysis scheme is presented for the TR‐XAS difference fitting in both the extended X‐ray absorption fine‐structure (EXAFS) and the X‐ray absorption near‐edge structure (XANES) regions. R‐space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non‐derivative optimization algorithm and optimizes the local structure change in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR‐XAS difference analysis of Fe(phen)3 spin crossover complex and yielded reliable distance change and excitation population.  相似文献   

5.
The compound La2RuO5 was examined by the x‐ray absorption spectroscopy (XAS) methods, x‐ray absorption near edge structure (XANES) and extended x‐ray absorption fine structure (EXAFS). XANES technique was used to probe directly the average valence of Ru atoms in the compound. The energy shift of the Ru K‐edge in the XANES signal gave the average Ru valence state as 4.0 ± 0.1. EXAFS analysis provided, by yielding directly the interatomic distances and coordination numbers, the first information on the Ru atom neighborhood, on which the model for the Rietveld refinement of the unit cell of the new compound was devised. Finally, the local structure around the Ru atoms from the refinement was used in the FEFF6 code for a model EXAFS spectrum. The very good quantitative agreement with the measured spectrum proves that the refined crystal structure contains no systematic defects in the vicinity of Ru atoms. This result, together with the valence obtained from XANES, strongly confirms the proposed La2RuO5 stoichiometry. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
A series of Ni dithiolene complexes Ni[S2C2(CF3)]2n (n = ?2, ?1, 0) ( 1 , 2 , 3 ) and a 1‐hexene adduct Ni[S2C2(CF3)2]2(C6H12) ( 4 ) have been examined by Ni K‐edge X‐ray absorption near‐edge structure (XANES) and extended X‐ray absorption fine‐structure (EXAFS) spectroscopies. Ni XANES for 1 – 3 reveals clear pre‐edge features and approximately +0.7 eV shift in the Ni K‐edge position for `one‐electron' oxidation. EXAFS simulation shows that the Ni—S bond distances for 1 , 2 and 3 (2.11–2.16 Å) are within the typical values for square planar complexes and decrease by ~0.022 Å for each `one‐electron' oxidation. The changes in Ni K‐edge energy positions and Ni—S distances are consistent with the `non‐innocent' character of the dithiolene ligand. The Ni—C interactions at ~3.0 Å are analyzed and the multiple‐scattering parameters are also determined, leading to a better simulation for the overall EXAFS spectra. The 1‐hexene adduct 4 presents no pre‐edge feature, and its Ni K‐edge position shifts by ?0.8 eV in comparison with its starting dithiolene complex 3 . Consistently, EXAFS also showed that the Ni—S distances in 4 elongate by ~0.046 Å in comparison with 3 . The evidence confirms that the neutral complex is `reduced' upon addition of olefin, presumably by olefin donating the π‐electron density to the LUMO of 3 as suggested by UV/visible spectroscopy in the literature.  相似文献   

7.
A new approach is introduced for determining X‐ray absorption spectroscopy (XAS) spectra on absolute and relative scales using multiple solutions with different concentrations by the characterization and correction of experimental systematics. This hybrid technique is a development of standard X‐ray absorption fine structure (XAFS) along the lines of the high‐accuracy X‐ray extended range technique (XERT) but with applicability to solutions, dilute systems and cold cell environments. This methodology has been applied to determining absolute XAS of bis(N‐n‐propyl‐salicylaldiminato) nickel(II) and bis(N‐i‐propyl‐salicylaldiminato) nickel(II) complexes with square planar and tetrahedral structures in 15 mM and 1.5 mM dilute solutions. It is demonstrated that transmission XAS from dilute systems can provide excellent X‐ray absorption near‐edge structure (XANES) and XAFS spectra, and that transmission measurements can provide accurate measurement of subtle differences including coordination geometries. For the first time, (transmission) XAS of the isomers have been determined from low‐concentration solutions on an absolute scale with a 1–5% accuracy, and with relative precision of 0.1% to 0.2% in the active XANES and XAFS regions after inclusion of systematic corrections.  相似文献   

8.
X‐ray absorption spectra at the K‐edge of copper have been studied in copper mixed ligand complexes having hydroxamic acid as one of the ligands. The X‐ray absorption spectra have been recorded at BL‐8 Dispersive Extended X‐ray Absorption Fine Structure (EXAFS) beamline at the 2.5‐GeV INDUS‐2 Synchrotron Source, RRCAT, Indore, India. The data obtained has been processed using EXAFS data analysis program Athena. The energies of the K absorption edge, chemical shifts, edge‐widths and shifts of the principal absorption maximum in the complexes have been determined and discussed. The chemical shift data have been utilized to estimate effective nuclear charge on the absorbing atom. The normalized EXAFS spectra have been Fourier transformed. The position of the first peak in the Fourier transform gives the value of first shell bond length, which is shorter than the actual bond length as a result of energy dependence of the phase factors in the sine function of the EXAFS equation. This distance is thus the phase‐uncorrected bond length and has also been determined by Lytle, Sayers and Stern's (LSS) graphical method. The results obtained from LSS and the Fourier transformation methods are comparable with each other. The first shell bond length has also been estimated by Lytle's and Levy's methods from the EXAFS data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Au–Pt bimetallic nanoparticles have been synthesized through a one‐pot synthesis route from their respective chloride precursors using block copolymer as a stabilizer. Growth of the nanoparticles has been studied by simultaneous in situ measurement of X‐ray absorption spectroscopy (XAS) and UV–Vis spectroscopy at the energy‐dispersive EXAFS beamline (BL‐08) at Indus‐2 SRS at RRCAT, Indore, India. In situ XAS spectra, comprising both X‐ray near‐edge structure (XANES) and extended X‐ray absorption fine‐structure (EXAFS) parts, have been measured simultaneously at the Au and Pt L3‐edges. While the XANES spectra of the precursors provide real‐time information on the reduction process, the EXAFS spectra reveal the structure of the clusters formed in the intermediate stages of growth. This insight into the formation process throws light on how the difference in the reduction potential of the two precursors could be used to obtain the core–shell‐type configuration of a bimetallic alloy in a one‐pot synthesis method. The core–shell‐type structure of the nanoparticles has also been confirmed by ex situ energy‐dispersive spectroscopy line‐scan and X‐ray photoelectron spectroscopy measurements with in situ ion etching on fully formed nanoparticles.  相似文献   

10.
X‐ray Raman scattering (XRS) provides a bulk‐sensitive method of measuring the extended X‐ray absorption fine structure (EXAFS) of soft X‐ray absorption edges. Accurate measurements and data analysis procedures for the determination of XRS‐EXAFS of polycrystalline diamond are described. The contributions of various angular‐momentum components beyond the dipole limit to the atomic background and the EXAFS oscillations are incorporated using self‐consistent real‐space multiple‐scattering calculations. The properly extracted XRS‐EXAFS oscillations are in good agreement with calculations and earlier soft X‐ray EXAFS results. It is shown, however, that under certain conditions multiple‐scattering contributions to XRS‐EXAFS deviate from those in standard EXAFS, leading to noticeable changes in the real‐space signal at higher momentum transfers owing to non‐dipole contributions. These results pave the way for the accurate application of XRS‐EXAFS to previously inaccessible light‐element systems.  相似文献   

11.
The local structures of pure NiAl and Ti‐, Co‐doped NiAl compounds have been obtained utilizing extended X‐ray absorption fine‐structure (EXAFS) spectroscopy. The results provide experimental evidence that Ni antisite defects exist in the Ni‐rich NiAl compounds. The site preference of Ti and Co has been confirmed. Ti occupies the Al sublattice, while Co occupies the Ni sublattice. The structure parameters obtained by EXAFS were consistent with the X‐ray diffraction results. Owing to the precipitation of α‐Cr, the local structure of NiAl‐Cr has not been obtained, making the site preference of Cr unclear.  相似文献   

12.
《X射线光谱测定》2003,32(2):158-160
X‐ray absorption near‐edge structure (XANES) measurements near the Au L3 edge were made on Au(III) complex ions adsorbed on titania and alumina without a specific reducing agent. Compared with the XANES spectrum of a pure gold foil, the gold adsorbed on titania and alumina was found to be reduced to Au(0). The XANES method could obtain spectra of gold particles less than 1 nm in diameter, although a UV–visible absorption spectrum was difficult to observe with such samples. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Obtaining structural information of uranyl species at an atomic/molecular scale is a critical step to control and predict their physical and chemical properties. To obtain such information, experimental and theoretical L3‐edge X‐ray absorption near‐edge structure (XANES) spectra of uranium were studied systematically for uranyl complexes. It was demonstrated that the bond lengths (R) in the uranyl species and relative energy positions (ΔE) of the XANES were determined as follows: ΔE1 = 168.3/R(U—Oax)2 ? 38.5 (for the axial plane) and ΔE2 = 428.4/R(U—Oeq)2 ? 37.1 (for the equatorial plane). These formulae could be used to directly extract the distances between the uranium absorber and oxygen ligand atoms in the axial and equatorial planes of uranyl ions based on the U L3‐edge XANES experimental data. In addition, the relative weights were estimated for each configuration derived from the water molecule and nitrate ligand based on the obtained average equatorial coordination bond lengths in a series of uranyl nitrate complexes with progressively varied nitrate concentrations. Results obtained from XANES analysis were identical to that from extended X‐ray absorption fine‐structure (EXAFS) analysis. XANES analysis is applicable to ubiquitous uranyl–ligand complexes, such as the uranyl–carbonate complex. Most importantly, the XANES research method could be extended to low‐concentration uranyl systems, as indicated by the results of the uranyl–amidoximate complex (~40 p.p.m. uranium). Quantitative XANES analysis, a reliable and straightforward method, provides a simplified approach applied to the structural chemistry of actinides.  相似文献   

14.
An X‐ray Raman spectrometer for studies of local structures in minerals is discussed. Contrary to widely adopted back‐scattering spectrometers using ≤10 keV X‐rays, a spectrometer utilizing ~20 keV X‐rays and a bent Laue analyzer is proposed. The 20 keV photons penetrate mineral samples much more deeply than 10 keV photons, so that high intensity is obtained owing to an enhancement of the scattering volume. Furthermore, a bent Laue analyzer provides a wide band‐pass and a high reflectivity, leading to a much enhanced integrated intensity. A prototype spectrometer has been constructed and performance tests carried out. The oxygen K‐edge in SiO2 glass and crystal (α‐quartz) has been measured with energy resolutions of 4 eV (EXAFS mode) and 1.3 eV (XANES mode). Unlike methods previously adopted, it is proposed to determine the pre‐edge curve based on a theoretical Compton profile and a Monte Carlo multiple‐scattering simulation before extracting EXAFS features. It is shown that the obtained EXAFS features are reproduced fairly well by a cluster model with a minimal set of fitting parameters. The spectrometer and the data processing proposed here are readily applicable to high‐pressure studies.  相似文献   

15.
Underglaze copper‐red decoration, i.e. the copper colourant used to paint diversified patterns on the surface of a body and then covered by transparent glaze and fired at high temperature in a reductive firing environment, is famous all over the world. However, the red colouration mechanism generated by underglaze copper remains unclear. In particular, the fact that the edges of the red patterns are orange has been ignored in previous research. Here, non‐destructive analysis has been carried out on a precious fragment of early underglaze red porcelain using synchrotron radiation X‐ray fluorescence, X‐ray absorption near‐edge spectroscopy (XANES) and reflection spectrometry techniques. The results suggest that the copper content in the red region is higher than that in the orange region, and other colour generation elements do not have obvious content difference, indicating that the colour generation effect of the underglaze red product is related to the copper content. XANES analysis shows that the valence states of copper in the red and orange regions are similar and metal copper contributes to their hues. The results of reflection spectrometry demonstrate that tiny orange hues could be attributed to the Mie scatting effect. Therefore, light‐scattering effects should be considered when researching the colouration mechanism of underglaze red.  相似文献   

16.
An automatic sample changer chamber for total reflection X‐ray fluorescence (TXRF) and X‐ray absorption near‐edge structure (XANES) analysis in TXRF geometry was successfully set up at the BAMline at BESSY II. TXRF and TXRF‐XANES are valuable tools for elemental determination and speciation, especially where sample amounts are limited (<1 mg) and concentrations are low (ng ml?1 to µg ml?1). TXRF requires a well defined geometry regarding the reflecting surface of a sample carrier and the synchrotron beam. The newly installed chamber allows for reliable sample positioning, remote sample changing and evacuation of the fluorescence beam path. The chamber was successfully used showing accurate determination of elemental amounts in the certified reference material NIST water 1640. Low limits of detection of less than 100 fg absolute (10 pg ml?1) for Ni were found. TXRF‐XANES on different Re species was applied. An unknown species of Re was found to be Re in the +7 oxidation state.  相似文献   

17.
For spectral imaging of chemical distributions using X‐ray absorption near‐edge structure (XANES) spectra, a modified double‐crystal monochromator, a focusing plane mirrors system and a newly developed fluorescence‐type X‐ray beam‐position monitoring and feedback system have been implemented. This major hardware upgrade provides a sufficiently stable X‐ray source during energy scanning of more than hundreds of eV for acquisition of reliable XANES spectra in two‐dimensional and three‐dimensional images. In recent pilot studies discussed in this paper, heavy‐metal uptake by plant roots in vivo and iron's phase distribution in the lithium–iron–phosphate cathode of a lithium‐ion battery have been imaged. Also, the spatial resolution of computed tomography has been improved from 70 nm to 55 nm by means of run‐out correction and application of a reconstruction algorithm.  相似文献   

18.
The ability to probe morphology and phase distribution in complex systems at multiple length scales unravels the interplay of nano‐ and micrometer‐scale factors at the origin of macroscopic behavior. While different electron‐ and X‐ray‐based imaging techniques can be combined with spectroscopy at high resolutions, owing to experimental time limitations the resulting fields of view are too small to be representative of a composite sample. Here a new X‐ray imaging set‐up is proposed, combining full‐field transmission X‐ray microscopy (TXM) with X‐ray absorption near‐edge structure (XANES) spectroscopy to follow two‐dimensional and three‐dimensional morphological and chemical changes in large volumes at high resolution (tens of nanometers). TXM XANES imaging offers chemical speciation at the nanoscale in thick samples (>20 µm) with minimal preparation requirements. Further, its high throughput allows the analysis of large areas (up to millimeters) in minutes to a few hours. Proof of concept is provided using battery electrodes, although its versatility will lead to impact in a number of diverse research fields.  相似文献   

19.
Polarization‐dependent damping of the fine structure in the Cu K‐edge spectrum of creatinium tetrachlorocuprate [(creat)2CuCl4] in the X‐ray absorption near‐edge structure (XANES) region is shown to be due to atomic vibrations. These vibrations can be separated into two groups, depending on whether the respective atoms belong to the same molecular block; individual molecular blocks can be treated as semi‐rigid entities while the mutual positions of these blocks are subject to large mean relative displacements. The effect of vibrations can be efficiently included in XANES calculations by using the same formula as for static systems but with a modified free‐electron propagator which accounts for fluctuations in interatomic distances.  相似文献   

20.
Surface‐sensitive analysis via extended X‐ray absorption fine‐structure (EXAFS) spectroscopy is demonstrated using a thickness‐defined SiO2 (12.4 nm)/Si sample. The proposed method exploits the differential electron yield (DEY) method wherein Auger electrons escaping from a sample surface are detected by an electron analyzer. The DEY method removes local intensity changes in the EXAFS spectra caused by photoelectrons crossing the Auger peak during X‐ray energy sweeps, enabling EXAFS analysis through Fourier transformation of wide‐energy‐range spectral oscillations. The Si K‐edge DEY X‐ray absorption near‐edge structure (XANES) spectrum appears to comprise high amounts of SiO2 and low Si content, suggesting an analysis depth, as expressed using the inelastic mean free path of electrons in general electron spectroscopy, of approximately 4.2 nm. The first nearest neighbor (Si—O) distance derived from the Fourier transform of the Si K‐edge DEY‐EXAFS oscillation is 1.63 Å. This value is within the reported values of bulk SiO2, showing that DEY can be used to detect a surface layer of 12.4 nm thickness with an analysis depth of approximately 4.2 nm and enable `surface EXAFS' analysis using Fourier transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号