首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
NH4MIIPO4·H2O (MII = Mg, Mn0.5Mg0.5, Co0.5Mg0.5) were synthesized by direct-precipitating method. The olivine-like LiMIIPO4 were successfully generated through the solid state reaction between the synthesized NH4MIIPO4·H2O precursors and two different Li-sources (Li2CO3 or LiOH·H2O). The NH4MIIPO4·H2O and LiMIIPO4 compounds were confirmed by TG/DTG/DTA, AAS/AES, FTIR and XRD methods. The structural and morphological properties of LiMIIPO4 compounds were studied by XRD and SEM, respectively. The XRD reflection shifts of olivine-like LiMIIPO4 from the Li-source of Li2CO3 revealed changing toward higher diffraction angles than that of LiMIIPO4 from the Li-source of LiOH·H2O. The XRD shifts of LiM0.5Mg0.5PO4 (M = Mn or Co) compounds confirmed the formation of the single phase of isodivalent doping of Mn2+ and Co2+ ions according to the change in the lattice parameters and cell volumes. The morphological investigations of the LiMIIPO4 obtained from Li2CO3 system illustrated the grain-like shape particles having smaller size of about 150–400 nm on account of the sequential transformations of types: deammoniation, dehydration, polycondensation and decarbonization. Conversely, the larger size particles (300–700 nm) of the LiMIIPO4 obtained from LiOH·H2O were observed due to the shorter transformation path through the reactions of types: deammoniation and dehydration without polycondensation and decarbonization.  相似文献   

2.
We describe the synthesis, crystal structures, and optical absorption spectra/colors of 3d‐transition‐metal‐substituted α‐LiZnBO3 derivatives: α‐LiZn1?xMIIxBO3 (MII=CoII (0<x<0.50), NiII (0<x≤0.05), CuII (0<x≤0.10)) and α‐Li1+xZn1?2xMIIIxBO3 (MIII=MnIII (0<x≤0.10), FeIII (0<x≤0.25)). The crystal structure of the host α‐LiZnBO3, which is both disordered and distorted with respect to Li and Zn occupancies and coordination geometries, is largely retained in the derivatives, which gives rise to unique colors (blue for CoII, magenta for NiII, violet for CuII) that could be of significance for the development of new, inexpensive, and environmentally friendly pigment materials, particularly in the case of the blue pigments. Accordingly, this work identifies distorted tetrahedral MO4 (M=Co, Ni, Cu) structural units, with a long M?O bond that results in trigonal bipyramidal geometry, as new chromophores for blue, magenta, and violet colors in a α‐LiZnBO3 host. From the L*a*b* color coordinates, we found that Co‐substituted compounds have an intense blue color that is stronger than that of CoAl2O4 and YIn0.90Mn0.10O3. The near‐infrared (NIR) reflectance spectral studies indicate that these compounds exhibit a moderate IR reflectivity that could be significant for applications as “cool pigments”.  相似文献   

3.
The ion conductors Li4+xAlxSi1‐xO4‐yLi3PO4 (x = 0 to 0.5, y = 0 to 0.6) were prepared by the Sol‐Gel method. The powder and sintered samples were characterized by DTA‐TG, XRD, SEM, and AC impedance techniques. The conductivity and sinterability increased when y increased from 0 to 0.4 in the Li4+xAlxSi1‐xO4‐yLi3PO4. The particle size of the powder samples is about 0.13 μm. The maximum conductivity at 20 °C is 3.128 × 10?5s cm?1 for Li4.4Al0.4Si0.6O4‐0.4 Li3PO4.  相似文献   

4.
Two new mixed‐valence iron phosphates, namely heptairon pentaphosphate hydrogen phosphate, Fe6.67(PO4)5.35(HPO4)0.65, and heptairon tetraphosphate bis(hydrogen phosphate), Fe6.23(PO4)4.45(HPO4)1.55, have been synthesized hydrothermally at 973 K and 0.1 GPa. The structures are similar to that of FeII3FeIII4(PO4)6 and are characterized by infinite chains of Fe polyhedra parallel to the [101] direction. These chains are formed by the Fe1O6 and Fe2O6 octahedra, alternating with the Fe4O5 distorted pentagonal bipyramids, according to the stacking sequence ...Fe1–Fe1–Fe4–Fe2–Fe2.... The Fe3O6 octahedra and PO4 tetrahedra connect the chains together. FeII is localized on the Fe3 and Fe4 sites, whereas FeIII is found in the Fe1 and Fe2 sites, according to bond‐valence calculations. Refined site occupancies indicate the presence of vacancies on the Fe4 site, explained by the substitution mechanism FeII + 2(PO43−) = vacancies + 2(HPO42−).  相似文献   

5.
The isomorphous partial substitution of Zn2+ ions in the secondary building unit (SBU) of MFU‐4l leads to frameworks with the general formula [MxZn(5–x)Cl4(BTDD)3], in which x≈2, M=MnII, FeII, CoII, NiII, or CuII, and BTDD=bis(1,2,3‐triazolato‐[4,5‐b],[4′,5′‐i])dibenzo‐[1,4]‐dioxin. Subsequent exchange of chloride ligands by nitrite, nitrate, triflate, azide, isocyanate, formate, acetate, or fluoride leads to a variety of MFU‐4l derivatives, which have been characterized by using XRPD, EDX, IR, UV/Vis‐NIR, TGA, and gas sorption measurements. Several MFU‐4l derivatives show high catalytic activity in a liquid‐phase oxidation of ethylbenzene to acetophenone with air under mild conditions, among which Co‐ and Cu derivatives with chloride side‐ligands are the most active catalysts. Upon thermal treatment, several side‐ligands can be transformed selectively into reactive intermediates without destroying the framework. Thus, at 300 °C, CoII‐azide units in the SBU of Co‐MFU‐4l are converted into CoII‐isocyanate under continuous CO gas flow, involving the formation of a nitrene intermediate. The reaction of CuII‐fluoride units with H2 at 240 °C leads to CuI and proceeds through the heterolytic cleavage of the H2 molecule.  相似文献   

6.
Single crystals of oxidephosphates MTi2O2(PO4)2 [M: Fe (dark red), Co (pinkish red), Ni (green)] with edge‐lengths up to 0.4 mm were grown by chemical vapour transport. FeTi2O2(PO4)2 and CoTi2O2(PO4)2 are isotypic to NiTi2O2(PO4)2. The crystal structure of the latter was previously solved from powder data [FeTi2O2(PO4)2 (data for CoTi2O2(PO4)2 and NiTi2O2(PO4)2 in brackets): monoclinic, P21/c, Z = 2, a = 7.394(3) (7.381(6), 7.388(4)) Å, b = 7.396(2) (7.371(5), 7.334(10)) Å, c = 7.401(3) (7.366(6), 7.340(3)) Å, β = 120.20(3) (120.26(6), 120.12(4))°, R1 = 0.0393 (0.0309, 0.0539) wR2 = 0.1154 (0.0740, 0.1389), 2160 (1059, 1564) independent reflections, 75 (76, 77) variables]. The single‐crystal study allowed improved refinement using anisotropic displacement parameters, yielded lower standard deviations for the structural parameters and revealed a small amount of cation disordering. Twinning and cation disordering within the structures are rationalized by a detailed crystallographic classification of the MTi2O2(PO4)2 structure type in terms of group‐subgroup relations. The structure is characterized by a three‐dimensional network of [PO4] tetrahedra and [MIITi2O12] groups formed by face‐sharing of [MIIO6] and [TiO6] octahedra. Electronic absorption spectra of MTi2O2(PO4)2 in the UV/VIS/NIR region show rather large ligand‐field splittings for the strongly trigonally distorted chromophors [MIIO6] (M = Fe, Co, Ni) with interelectronic repulsion parameters beeing slightly smaller than in other phosphates. Interpretation of the spectra within the framework of the angular overlap model reveals a significant second‐sphere ligand field effect of TiIV ions on the electronic levels of the NiII and CoII.  相似文献   

7.
Two organic–inorganic hybrid compounds have been prepared by the combination of the 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium cation with perhalometallate anions to give 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridocobaltate(II), (C12H12N2)[CoCl4], (I), and 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridozincate(II), (C12H12N2)[ZnCl4], (II). The compounds have been structurally characterized by single‐crystal X‐ray diffraction analysis, showing the formation of a three‐dimensional network through X—H...ClnM (X = C, N+; n = 1, 2; M = CoII, ZnII) hydrogen‐bonding interactions and π–π stacking interactions. The title compounds were also characterized by FT–IR spectroscopy and thermogravimetric analysis (TGA).  相似文献   

8.
The crystal structures of two new isomorphous transition metal squarato complexes [MII(C4O4)(dmso)2(OH2)2] [MII = CoII (3d7), MnII (3d5); dmso = dimethylsulfoxide] and their magnetic properties are reported. The compounds feature two symmetrically independent chains, in which 1,3‐bridging squarato ligands connect cations in distorted octahedral surroundings of pseudo‐symmetry D4h. From an equimolar solution of CoCl2 · 6H2O and MnCl2 · 2H2O a mixed‐metal coordination polymer crystallizes; it represents a solid solution and adopts the same structure as the corresponding monometallic compounds. The results of the diffraction experiment unambiguously proof the presence of both CoII and MnII cations in either independent site albeit no precise ratio between the metal cations involved may be deduced from these findings. The difference in the magnetic properties between CoII and MnII cations in the given ligand field has allowed us to establish their ratio in the solid solution more reliably than by X‐ray diffraction: Accounting for ligand field potential and spin‐orbit coupling of CoII and regarding MnII as a pure spin system, the calculations yielded a fraction of 73 % CoII in the mixed‐metal polymer. With respect to superexchange effects only weak antiferromagnetic interactions have been detected for the three coordination polymers.  相似文献   

9.
A theoretical density functional study of the magnetic coupling interactions and magnetic anisotropy in a family of experimentally synthesized and theoretically modeled M′6M8(CN24) (M′=CuII, NiII or CoII; M=FeIII or CrIII) systems is presented. The calculations show that the interactions in the selected M′6M8(CN24) are all ferromagnetic and the near cubic symmetry of Cu6Fe8 is the origin of its negative magnetic anisotropy parameter D.  相似文献   

10.
Structural and Magnetochemical Studies at the Ternary Phosphates Ba2MII(PO4)2 (MII = Mn, Co) and Refinement of the Crystal Structure of BaNi2(PO4)2 Single crystals of the following phosphates were grown by the floating zone technique using a mirror furnace and their crystal structures refined (0,02 < R1 < 0,04 and 0,04 < wR2 < 0,10, resp.): Ba2Mn(PO4)2 (a = 531.1(1), b = 896.8(1), c = 1625.6(3) pm, β = 90.26(1)°), Ba2Co(PO4)2 (a = 529.8(1), b = 884.4(1), c = 1614.4(3) pm, β = 90.68(2)°) and BaNi2(PO4)2 (a = 480.0(1), c = 2327.3(5) pm, Z = 3, space group R3). Both compounds Ba2MII(PO4)2 crystallize with Z = 4 in space group P21/n of the monoclinic Ba2Ni(PO4)2 type; BaNi2(PO4)2 has the hexagonal‐rhombohedral structure of the BaNi2(AsO4)2 type. Magnetic measurements of powders of Ba2Mn(PO4)2 and Ba2Co(PO4)2 yielded room temperature moments of μeff = 5,73 and 4,93 μB, resp., but only the manganese compound obeys the Curie‐Weiss law down to low temperatures. Weak antiferromagnetic interactions at both compounds only near TM ≈ 5 K lead to a reciprocal susceptibility minimum.  相似文献   

11.
A simple and versatile method for general synthesis of uniform one‐dimensional (1D) MxCo3−xS4 (M=Ni, Mn, Zn) hollow tubular structures (HTSs), using soft polymeric nanofibers as a template, is described. Fibrous core–shell polymer@M‐Co acetate hydroxide precursors with a controllable molar ratio of M/Co are first prepared, followed by a sulfidation process to obtain core–shell polymer@MxCo3−xS4 composite nanofibers. The as‐made MxCo3−xS4 HTSs have a high surface area and exhibit exceptional electrochemical performance as electrode materials for hybrid supercapacitors. For example, the MnCo2S4 HTS electrode can deliver specific capacitance of 1094 F g−1 at 10 A g−1, and the cycling stability is remarkable, with only about 6 % loss over 20 000 cycles.  相似文献   

12.
A simple and versatile method for general synthesis of uniform one‐dimensional (1D) MxCo3?xS4 (M=Ni, Mn, Zn) hollow tubular structures (HTSs), using soft polymeric nanofibers as a template, is described. Fibrous core–shell polymer@M‐Co acetate hydroxide precursors with a controllable molar ratio of M/Co are first prepared, followed by a sulfidation process to obtain core–shell polymer@MxCo3?xS4 composite nanofibers. The as‐made MxCo3?xS4 HTSs have a high surface area and exhibit exceptional electrochemical performance as electrode materials for hybrid supercapacitors. For example, the MnCo2S4 HTS electrode can deliver specific capacitance of 1094 F g?1 at 10 A g?1, and the cycling stability is remarkable, with only about 6 % loss over 20 000 cycles.  相似文献   

13.
A number of new phosphates of the formula MII3MIII(PO4)3 has been prepared. They have the cubic structure of eulytite (Bi4(SiO4)3). Obviously all combinations of the cations being specified in the title for MII and MIII seem to be possible; moreover, Ca3Bi(PO4)3 does exist. The ions MII and MIII are distributed on the positions of Bi in a statistical manner. The peculiar dependence of the lattive constants of the lanthanide compounds Pb3Ln(PO4)3 (including La) on the (Atomic number of the lanthanide ions suggests the conclusion that the small trivalent cations (r < 1 Å) do not have a close contact with the surrounding oxygen ions forming a distorted octahedron.  相似文献   

14.
This paper reports a new partially oxidized triphylite‐type phosphate (lithium iron phosphate), which has been synthesized hydrothermally at 973 K and 0.1 GPa. The structure is similar to that of natural triphylite, LiFe(PO4), and is characterized by two chains of edge‐sharing octahedra parallel to the b axis. The weakly distorted M1 octahedra contain Li atoms, whereas the more strongly distorted M2 octahedra contain FeII and FeIII atoms. Refined site occupancies and bond‐valence analysis show the presence of FeIII and vacancies on the M2 site, mainly explained by the substitution mechanism 3 FeII = 2 FeIII + vacancies.  相似文献   

15.
The crystal structures among M1–M2–(H)‐arsenites (M1 = Li+, Na+, K+, Rb+, Cs+, Ca2+, Sr2+, Ba2+, Cd2+, Pb2+; M2 = Mg2+, Mn2+,3+, Fe2+,3+, Co2+, Ni2+, Cu2+, Zn2+) are less investigated. Up to now, only the structure of Pb3Mn(AsO3)2(AsO2OH) was described. The crystal structure of hydrothermally synthesized Na4Cd7(AsO3)6 was solved from the single‐crystal X‐ray diffraction data. Its trigonal crystal structure [space group R$\bar{3}$ , a = 9.5229(13), c = 19.258(4) Å, γ = 120°, V = 1512.5(5) Å3, Z = 3] represents a new structure type. The As atoms are arranged in monomeric (AsO3)3– units. The surroundings of the two crystallographically unique sodium atoms show trigonal antiprismatic coordination, and two mixed Cd/Na sites are remarkably unequal showing tetrahedral and octahedral coordinations. Despite the 3D connection of the AsO3 pyramids, (Cd,Na)Ox polyhedra and NaO6 antiprisms, a layer‐like arrangement of the Na atoms positioned in the hexagonal channels formed by CdO4 deformed tetrahedra and AsO3 pyramids in z = 0, 1/3, 2/3 is to be mentioned. These pseudo layers are interconnected to the 3D network by (Cd,Na)O6 octahedra. Raman spectra confirmed the presence of isolated AsO3 pyramids.  相似文献   

16.
Cyanide‐bridged metal complexes of [Fe8M6(μ‐CN)14(CN)10 (tp)8(HL)10(CH3CN)2][PF6]4?n CH3CN?m H2O (HL=3‐(2‐pyridyl)‐5‐[4‐(diphenylamino)phenyl]‐1H‐pyrazole), tp?=hydrotris(pyrazolylborate), 1 : M=Ni with n=11 and m=7, and 2 : M=Co with n=14 and m=5) were prepared. Complexes 1 and 2 are isomorphous, and crystallized in the monoclinic space group P21/n. They have tetradecanuclear cores composed of eight low‐spin (LS) FeIII and six high‐spin (HS) MII ions (M=Ni and Co), all of which are bridged by cyanide ions, to form a crown‐like core structure. Magnetic susceptibility measurements revealed that intramolecular ferro‐ and antiferromagnetic interactions are operative in 1 and in a fresh sample of 2 , respectively. Ac magnetic susceptibility measurements of 1 showed frequency‐dependent in‐ and out‐of‐phase signals, characteristic of single‐molecule magnetism (SMM), while desolvated samples of 2 showed thermal‐ and photoinduced intramolecular electron‐transfer‐coupled spin transition (ETCST) between the [(LS‐FeII)3(LS‐FeIII)5(HS‐CoII)3(LS‐CoIII)3] and the [(LS‐FeIII)8(HS‐CoII)6] states.  相似文献   

17.
The Li4+xMxSi4+xO4‐yLi2O (M=Al, B; x = 0 to 0.6, y = 0 to 0.5) ion conductors were prepared by the Sol‐Gel method and examined in detail. The powder and sintered samples were characterized by DTA‐TG, XRD, SEM, and AC impedance techniques. The experimental results show that the conductivity and sinterability in creased with the amount of excess lithium oxide in the silicate. The Li2O phase acts as a flux to accelerate the sintering process and to obtain high conductivity of grain boundaries. The particle size of the sintered pellets is about 0.25 μm. The maximum conductivity at 200 °C is 5.40 × 10?3s cm?1 for Li4.4Al0.4 Si0.6O4‐0.3Li2O.  相似文献   

18.
Summary Several new coordination compounds are reported withN-carbamoylpyrazole (Hcpz) as the ligand;viz. M(cpz)2 where M = CuII and NiII; M(Hcpz)Cl2 where M = MnII, CoII, CuII, ZnII and CdII; M(Hcpz)2Cl2 Where M = FeII, CoII and NiII: M(Hcpz)3(BF4)2 where M = FeII, CoII, NiII, ZnII and CdII; and Cu(Hcpz)2(BF4)2. In the salts, Hcpz is coordinated through the nitrogen atoms of the pyrazole ring and the nitrogen atom of the carbamoyl group. In the Hcpz complexes, coordination takes place through the nitrogen atom of the pyrazole ring and the oxygen atom of the carbamoyl group.  相似文献   

19.
Thermogravimetric and difference thermal analyses show that the reactions of lithium nitride with the transition metals Cu and Ni under molecular nitrogen to form phases Li2[(Li1‐xMIx)N] take place above 673 K. The maximum weight gains are reached at 926 K and 968 K for M = Cu and Ni, respectively. At higher temperatures, the ternary phases Li2[(Li1‐xMIx)N] decompose, limiting the substitutional level x. In the temperature range of 773 K — 873 K, the successful synthesis of Li2[(Li1‐xNiIx)N] (0 < x ≤ 0.85(1)) single phase products is demonstrated. Maximum substitution obtained for the Cu phases is xmax= 0.43(1). The dependence of the lattice parameters of the hexagonal unit cell on x is almost linear. The magnetic moment of M strongly depends on x. At low x the magnetic moments in phases with M = Ni are presumably enhanced by orbital effects. A decrease of μeff with x to μeff(x = 1) → 0 is explained by delocalization of the magnetic moments and by the gradual formation of a metal for the hypothetical compound Li2[NiN] (x = 1). XAS spectroscopy at the transition metal K‐edges shows that Cu and Ni principally correspond to d10‐ and d9‐configurations, respectively.  相似文献   

20.
Cd2Cu(PO4)2     
During an investigation of the insufficiently known system M1O–M2O–X2O5–H2O (M1 = Cd2+, Sr2+ and Ba2+; M2 = Cu2+, Ni2+, Co2+, Zn2+ and Mg2+; X = P5+, As5+ and V5+), single crystals of the novel compound dicadmium copper(II) bis[phosphate(V)], Cd2Cu(PO4)2, were obtained. This compound belongs to a small group of compounds adopting a Cu3(PO4)2‐type structure and having the general formula M12M2(XO4)2 (M1/M2 = Cd2+, Cu2+, Mg2+ and Zn2+; X = As5+, P5+ and V5+). The crystal structure is characterized by the interconnection of infinite [Cu(PO4)2]n chains and [Cd2O10]n double chains, both extending along the a axis. Exceptional characteristics of this structure are its novel chemical composition and the occurrence of double chains of CdO6 polyhedra that were not found in related structures. In contrast to the isomorphous compounds, where the M1 cations are coordinated by five O atoms, the Cd atom is coordinated by six. The dissimilarity in the geometry of M1 coordination between Cd2Cu(PO4)2 and the isomorphous compounds is mostly due to the larger ionic radius of the Cd cation in comparison with the Cu, Mg and Zn cations. Sharing a common edge, two CdO6 polyhedra form Cd2O10 dimers. Each such dimer is bonded to another dimer sharing common vertices, forming [Cd2O10]n double chains in the [100] direction. The Cu atoms, located on an inversion centre (site symmetry ), form isolated CuO4 squares interconnected by PO4 tetrahedra, forming [Cu(PO4)2]n chains similar to those found in related structures. Conversely, the [Cd2O10]n double chains, which were not found in related structures, are an exclusive feature of this structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号