首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The crystal and electronic structures of ordered half antiperovskites A2Rh3S2 = ARh3/2S (A = In, Sn, Tl, Pb, Bi) are investigated. From powder and single crystal data superstructures, rhodium site ordering, trends in bonding and coordination are analysed with respect to the A site atom. Comparisons address isotypic and isoelectronic relations to monoclinic parkerite (Bi2Ni3S2) type superconductors, the trigonal half‐metal ferromagnet Sn2Co3S2, and rhodium‐containing antiperovskites. Local structure and bonding is analysed with respect to the ordered occupation of half of S2A4 sites (= perovskite oxygen sites) and interlinking to 2D networks [Rh3S2]δ by face‐, edge‐ and corner‐sharing. The theoretical part includes DFT band structure and ELF calculations, systematic comparisons to rhodium and antiperovskites, as well as spin‐polarised calculations on Sn2Rh3S2 and Pb2Rh3S2.  相似文献   

3.
On the A2?2xSn5+xCl12 (A = K, In) Phases The refinement of the structure of A2-2xSn5+xCl12 compounds (A = K+, In+) with single crystal data is reported. They crystallize with the Th7S12 type arrangement (a = 1192(2) pm, c = 428.9(8) pm (K-compound); a = 1189.8(6) pm, c = 431.2(3) pm (In-compound)) for which we propose the space group P6 . The possibility of meroedric twinning is discussed. Due to the composition of these compounds the structure is necessarily disordered and this leads to a wide range of homogeneity which can be influenced by the size and the polarity of the A type cation.  相似文献   

4.
A new type of Zintl phase is presented that contains endohedrally filled clusters and that allows for the formation of intermetalloid clusters in solution by a one‐step synthesis. The intermetallic compound K5?xCo1?xSn9 was obtained by the reaction of a preformed Co? Sn alloy with potassium and tin at high temperatures. The diamagnetic saltlike ternary phase contains discrete [Co@Sn9]5? clusters that are separated by K+ ions. The intermetallic compound K5?xCo1?xSn9 readily and incongruently dissolves in ethylenediamine and in the presence of 4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]hexacosane (2.2.2‐crypt), thereby leading to the formation of crystalline [K([2.2.2]crypt)]5[Co2Sn17]. The novel polyanion [Co2Sn17]5? contains two Co‐filled Sn9 clusters that share one vertex. Both compounds were characterized by single‐crystal X‐ray structure analysis. The diamagnetism of K5?xCo1?xSn9 and the paramagnetism of [K([2.2.2]crypt)]5[Co2Sn17] have been confirmed by superconducting quantum interference device (SQUID) and EPR measurements, respectively. Quantum chemical calculations reveal an endohedral Co1? atom in an [Sn9]4? nido cluster for [Co@Sn9]5? and confirm the stability of the paramagnetic [Co2Sn17]5? unit.  相似文献   

5.
The local structure of In2O3 cosubstituted with Zn and Sn (In2−2xSnxZnxO3, x≤0.4 or ZITO) was determined by extended X-ray absorption fine structure (EXAFS) for x=0.1, 0.2, 0.3 and 0.4. The host bixbyite In2O3 structure is maintained up to the enhanced substitution limit (x=0.4). The EXAFS spectra are consistent with random substitution of In by the smaller Zn and Sn cations, a result that is consistent with the “good-to-excellent” conductivities reported for ZITO.  相似文献   

6.
Compounds with Layered Structures in the Systems CuGa5S8/CuIn5S8 and AgGa5S8/AgIn5S8 The title systems have been investigated by single crystal and powder X‐ray diffraction methods on quenched samples. In the system AgGaxIn5–xS8 spinel type phases are formed up to x < 2. A compound crystallising with a hexagonal layered structure is obtained for 2 < x ≤ 3. The crystal structure of this layered phase has been solved on a single crystal of composition AgGa3In2S8: space group P63mc, Z = 2, a = 380.80 and c = 3076.4 pm. The structure is isotypic to the Zn2In2S5 (II a) type. The sample AgGa4InS8 crystallises in a Wurtzite like structure with a = 377.25 and c = 616.1 pm. In the system CuGaxIn5–xS8 a new compound with layered structure has been detected for 1 ≤ x ≤ 2 which crystallises hexagonally with a = 380.28 and c = 3073.4 pm (x = 2). For the spinel CuIn5S8 an exchange of In by Ga is not detected.  相似文献   

7.
Cation Distribution and Superstructure Ordering in Ternary and Quaternary Sulfide Spinels MIIM2III S4 – Single Crystal Structure Determinations The crystal structures of spinel type MIn2S4 (M ? Mn, Co, Ni), MCr2?2xIn2xS4 (M ? Mn, Ni), and Cd0.52Co0,48Cr2S4 were reinvestigated by X-ray methods using single crystals grown by vapour phase transport technique. The indium sulfides possess a partially inverse distribution of the metal ions on the tetrahedral (8a) and octahedral sites (16d) of the structure. The degrees of inversion λ are 0.34 (MnIn2S4, a = 1072.0(1) pm, structural parameter u = 0.25726(2)), 0.84 (CoIn2S4, a = 1058.1(1) pm, u = 0.26921(5)) und 0.93 (NiIn2S4 a = 1050.5(1), u = 0.26040(3)). In the case of the chromium indium sulfide solid solutions, the degrees of inversion (and the structural parameters) increase (and decrease) linearly with increase in indium content x. ψ-scans of reflections not allowed in the space group Fd3 m do not prove simultaneous diffraction. Refinement of the structure of MnIn2S4 in space group F4 3m results in a partial superstructure ordering of Mn and In on the tetrahedral sites, 4a Mn0.83In0.17, 4c Mn0.49In0.51. In the case of Cd0.52Co0.48Cr2S4, superstructure ordering is like Cd0.41Co0.59 and Cd0.62Co0.38, respectively.  相似文献   

8.
Trisamarium digallide tristannide crystallizes with a partially ordered Pu3Pd5‐type structure in space group Cmcm. In a single crystal of Sm3Ga1.89(4)Sn3.11(4), the 8g position is mostly occupied by Sn atoms (93% Sn and 7% Ga), while the 4c and 8f positions are occupied by a Ga/Sn statistical mixture. The evolution of the structure as a function of the Ga content has been studied by X‐ray powder diffraction on ten Sm3Ga5−xSnx samples. It is shown that the 8g position remains occupied essentially exclusively by Sn atoms within the whole homogeneity range, with x ranging from 2.52 to 4.20.  相似文献   

9.
The binary intermetallic compound NiMg2 (own structure type) forms a pronounced solid solution NiMg2?xSnx. The structure of NiMg1.85(1)Sn0.15(1) was refined on the basis of single crystal X‐ray data: P6422, a = 520.16(7), c = 1326.9(1) pm, wR2 = 0.0693, 464 F2 values, and 20 variables. With increasing magnesium/tin substitution, the structure type changes. Crystals with x = 0.22 and 0.40 adopt the orthorhombic CuMg2 type: Fddd, a = 911.0(2), b = 514.6(1), c = 1777.0(4) pm, wR2 = 0.0427, 394 F2 values for NiMg1.78(1)Sn0.22(1), and a = 909.4(1), b = 512.9(1), c = 1775.6(1) pm, wR2 = 0.0445, 307 F2 values for NiMg1.60(1)Sn0.40(1) with 19 variables per refinement. The nickel atoms build up almost linear chains with Ni–Ni distances between 260 and 263 pm in both modifications where each nickel atom has coordination number 10 with two nickel and eight Mg/Sn neighbors. Both magnesium sites in the NiMg2 and CuMg2 type structures show Mg/Sn mixing. The Ni polyhedra are condensed leading to dense layers which show a different stacking sequence in both structure types. The crystal chemical peculiarities of these intermetallics are briefly discussed.  相似文献   

10.
Exploratory studies in the systems A–Al–Sn (A = K and Rb) yielded the clathrates K8AlxSn46–x (potassium aluminium stannide) and Rb8AlxSn46–x (rubidium aluminium stannide), both with the cubic type‐I structure (space group Pmn, No. 223; a ? 12.0 Å). The Al:Sn ratio is close to the idealized A8Al8Sn38 composition and it is shown that it can be varied slightly, in the range of ca ±1.5, depending on the experimental conditions. Both the (Sn,Al)20 and the (Sn,Al)24 cages in the structure are fully occupied by the guest alkali metal atoms, i.e. K or Rb. The A8Al8Sn38 formula has a valence electron count that obeys the valence rules and represents an intrinsic semiconductor, while the experimentally determined compositions A8AlxSn38?x suggest the synthesized materials to be nearly charge‐balanced Zintl phases, i.e. they are likely to behave as heavily doped p‐ or n‐type semiconductors.  相似文献   

11.
The structure of the recently reported transparent conductor, Ga3−xIn5+xSn2O16(0.3<x<1.6), was established by a combination of high-resolution electron microscopy, convergent-beam electron diffraction, and Rietveld analysis of powder diffraction data (X-ray and time-of-flight neutron methods). This “T-phase” compound has an anion-deficient fluorite-derivative structure whose space group isI41/a. Although there are similarities to the parent oxide structures, the T-phase lacks one of the distorted InO6octahedra observed in In2O3, which may account for its inability to be donor-doped by Sn.  相似文献   

12.
Cu2MnGeS4 crystallizes orthorhombic in a wurtzite superstructure type while Cu2MnSnS4 crystallizes in a tetragonal sphalerite superstructure type. Lattice constants and thermal analyses of the solid solution series Cu2MnGexSn1−xS4 are presented. A two-phase region is found from Cu2MnGe0.3Sn0.7S4 to Cu2MnGe0.5Sn0.5S4. The cell volume of the mixed crystals increases with increasing Sn content. The melting points increase smoothly with increasing Ge content to x=0.5 and then steeply for higher Ge contents. The single crystal X-ray structure analysis of Cu2MnGe0.55Sn0.45S4 is presented. The refinement converges to R=0.0270 and wR2=0.0586, Z is 2. The volumes of the tetrahedra [MS4] (M=Cu, Mn, Ge, Sn) are calculated. From these volumes the differences in size of the tetrahedra are derived and compared with the corresponding differences in the end members of the solid solution series. It turns out that the resulting structure type in these materials depends on the volume differences of the constituting tetrahedra [MS4].  相似文献   

13.
A systematic approach to the formation of endohedrally filled atom clusters by a high‐temperature route instead of the more frequent multistep syntheses in solution is presented. Zintl phases Na12Ni1?xSn17 and K13?xCo1?xSn17, containing endohedrally filled intermetalloid clusters [Ni@Sn9]4? or [Co@Sn9]5? beside [Sn4]4?, are obtained from high‐temperature reactions. The arrangement of [Ni@Sn9]4? or [Co@Sn9]5? and [Sn4]4? clusters, which are present in the ratio 1:2, can be regarded as a hierarchical replacement variant of the hexagonal Laves phase MgZn2 on the Mg and Zn positions, respectively. The alkali‐metal positions are considered for the first time in the hierarchical relationship, which leads to a comprehensive topological parallel and a better understanding of the composition of these compounds. The positions of the alkali‐metal atoms in the title compounds are related to the known inclusion of hydrogen atoms in the voids of Laves phases. The inclusion of Co atoms in the {Sn9} cages correlates strongly with the number of K vacancies in K13?xCo1?xSn17 and K5?xCo1?xSn9, and consequently, all compounds correspond to diamagnetic valence compounds. Owing to their diamagnetism, K13?xCo1?xSn17, and K5?xCo1?xSn9, as well as the d‐block metal free binary compounds K12Sn17 and K4Sn9, were characterized for the first time by 119Sn solid‐state NMR spectroscopy.  相似文献   

14.
New Tin‐rich Stannides of the Systems AII‐Al‐Sn (AII = Ca, Sr, Ba) Four new tin‐rich intermetallics of the ternary systems Ca/Sr/Ba‐Al‐Sn were synthesized from stoichiometric amounts of the elements at maximum temperatures of 1200 °C. Their crystal structures, representing two new types, have been determined using single crystal x‐ray diffraction. Close to the 1:1 composition, the structures of the two isotypic compounds A18[Al4(Al/Sn)2Sn4][Sn4][Sn]2 (overall composition A9M8; A = Sr/Ba, tetragonal, space group P4/mbm, a = 1325.9(1)/1378.6(1), c = 1272.8(2)/1305.4(1) pm, Z = 4, R1 = 0.0430/0.0293) contain three different anionic Sn/Al building units: Isolated Sn atoms (motif I) coordinated by the alkaline earth cations only (comparable to Ca2Sn), linear Sn chains (II), which are comparable to the anions in trielides related to the W5Si3 structure type and finally octahedral clusters [Al4M2Sn4] (III), composed of four Al atoms forming the center plane, two statistically occupied Al/Sn atoms at the apexes and four exohedral Sn attached to Al. Close to the AM2 composition, two isotypic tin‐rich intermetallics A9[Al3Sn2][(Sn/Al)4]Sn6 (overall composition A9M15; A = Ca/Sr; space group C2/m, a = 2175.2(1)/2231.0(2), b = 1210.8(1)/1247.0(1), c = 1007.4(1)/1042.0(2) pm, β = 103.38(1)/103.42(1)°, Z = 2, R1 = 0.0541/0.0378) are formed. Their structure is best described as a complex three‐dimensional network, that can be considered to consist of the building units of the binary border phases too, i.e. linear zig‐zag chains of Sn (motif I) like in CaSn, ladders of four‐bonded Sn/Al atoms (II) like in SrAl2 and trigonal‐bipyramidal clusters [Al3Sn2] (III) also present in Ba3Al5. Despite the complex structures, some statistically occupied Al/Sn positions and the small disorder of one building unit, the bonding in both structure types can be interpreted using the Zintl concept and Wade's electron counting rules when taking partial Sn‐Sn bonds into account.  相似文献   

15.
The compounds Ae3Sn4?xBi1+x (Ae = Sr, Ba) with x < 1 have been synthesized by solid‐state reactions in welded Nb tubes at high temperature. Their structures were determined by single crystal X‐ray diffraction studies to be tetragonal; space group I4/mcm (No. 140); Z = 4, with a = 8.968(1) Å, c = 12.859(1) Å for Sr3Sn3.36Bi1.64(3) ( 1 ) and a = 9.248(2), c = 13.323(3) Å for Ba3Sn3.16Bi1.84(3) ( 2 ). The structure consists of two interpenetrating networks formed by a 3D Ae6/2Bi substructure (anti‐ReO3 type) forming the host, and layers of interconnected four‐member units [Sn4?xBix] with “butterfly”‐like shape as the guest. According to the Zintl‐Klemm concept, the compounds are slightly electron deficient and will be charge balanced for x = 1. The electronic structures of Ae3Sn4?xBi1+x calculated by the TB‐LMTO‐ASA method indicate that the compounds correspond to ideal semiconducting Zintl phases with a narrow band gap for x = 1 (zero‐gap semiconductor). The origin of the slight deviation from the optimal electron count for a valance compound is discussed.  相似文献   

16.
The Quaternary System ZnIn2S4? ZnIn2Se4? In2Se3? In2S3 The title system has been investigated on the indium rich side (ratio In/Zn ≥ 2) on samples quenched from 800°C to room temperature using x-ray methods. In this section 7 different phases could be identified the phase borders of which are given. ZnIn2S4-type and thiogallate type mixed crystals only show a small region of homogeneity while the monophase region of spinel type mixed crystals in the indiumsulfide rich part of the phase diagram has a larger extension. There is a new trigonal compound ZnIn2S2Se2 (ahex = 3.937, chex = 31.97 Å) with a large region of homogeneity. In the indiumselenide rich part there are two new phases: (i) Zn0.4In2Se3.4 with unknown structure and (ii) a ternary phase of unknown structure in the system In2S3?xSex for 2.1 ≤ x ≤ 2.7.  相似文献   

17.
The series of RE5Li2Sn7 (RE = Ce–Sm) compounds were synthesized by high‐temperature reactions and structurally characterized by single‐crystal X‐ray diffraction. The compounds are pentacerium dilithium heptastannide, Ce5Li1.97Sn7.03, pentapreseodymium dilithium heptastannide, Pr5Li1.98Sn7.02, pentaneodymium dilithium heptastannide, Nd5Li1.99Sn7.01, and pentasamarium dilithium heptastannide, Sm5Li2Sn7. All five compounds crystallize in the chiral orthorhombic space group P212121 (No. 19), which is relatively uncommon among intermetallic phases. The structure belongs to the Ce5Li2Sn7 structure type (Pearson symbol oP56), with 14 unique atoms in the asymmetric unit. Minor compositional variations exist, due to the mixed occupancy of Li and Sn atoms at one of the Li sites. The small occupational disorder is most evident for RE5Li2−xSn7+x (RE = Ce, Pr; x≃ 0.03), while the structure of Nd5Li2Sn7 and Sm5Li2Sn7 show no apparent disorder.  相似文献   

18.
We have synthesized spinel type cobalt‐doped LiMn2O4 (LiMn2?yCoyO4, 0≤y≤0.367), a cathode material for a lithium‐ion battery, with hierarchical sponge structures via the cobalt‐doped MnCO3 (Mn1‐xCoxCO3, 0≤x≤0.204) formed in an agar gel matrix. Biomimetic crystal growth in the gel matrix facilitates the generation of both an homogeneous solid solution and the hierarchical structures under ambient condition. The controlled composition and the hierarchical structure of the cobalt‐doped MnCO3 precursor played an important role in the formation of the cobalt‐doped LiMn2O4. The charge–discharge reversible stability of the resultant LiMn1.947Co0.053O4 was improved to ca. 12 % loss of the discharge capacity after 100 cycles, while pure LiMn2O4 showed 24 % loss of the discharge capacity after 100 cycles. The parallel control of the hierarchical structure and the composition in the precursor material through a biomimetic approach, promises the development of functional materials under mild conditions.  相似文献   

19.
The new ternary rhodium borides Mg3Rh5B2 and Sc3Rh5B2 (P4/mbm, Z = 2; a = 943.4(1) pm, c = 292.2(1) pm and a = 943.2(1) pm, c = 308.7(1) pm, respectively) crystallize with the Ti3Co5B2 type structure. Mg and Sc may in part be substituted by a variety of elements M. For M = Si and Fe, homogeneity ranges were found according to A3–xMxRh5B2 with 0 ≤ x ≤ 1.0 for A = Sc and with x up to 1.5 for A = Mg. Quaternary compounds with x = 1 (A2MRh5B2: A/M in short) were prepared with M = Be, Al, Si, P, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Sn (Co, Ni only with A = Mg; Sn only with A = Sc; P, As with deficiencies). Single crystal X‐ray investigations show an ordered substitutional variant of the Ti3Co5B2 type in which the M atoms are arranged in chains along [001] with intrachain and interchain M–M distances of about 300 pm and 660 pm, respectively. Measuring the magnetisation (1.7 K–800 K) of the phases Mg/Mn, Sc/Mn, Mg/Fe, and Sc/Fe reveals antiferromagnetic interactions in the first and dominating ferromagnetic intrachain interactions in the remaining ones. Interchain interactions of antiferromagnetic nature are evident in Sc/Mn and Mg/Fe leading to metamagnetism below TN = 130 K, while Sc/Fe behaves ferromagnetically below TC = 450 K. The overall trend towards stronger ferromagnetic interactions with increasing valence electron concentration is obvious.  相似文献   

20.
运用基于密度泛函理论的第一性原理方法,建立了SnO2以及不同比例Ru掺杂的SnO2超胞模型,在对其进行几何优化后计算了Sn1-xRuxO2(x=0,1/16,1/12,1/8,1/6,1/4,1/2)半导体的电子结构,并讨论了其晶格参数、电荷密度、能带结构和态密度(包括分态密度)等性质。结果表明,掺杂后,晶格参数随掺杂量的增加线性减小,与实验值的偏差在4%以内;掺杂后,在费米能级处可以提供更多的填充电子,使得电子跃迁至导带更容易,固溶体的导电性增强。为Sn1-xRuxO2固溶体电极材料的发展和应用提供了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号