首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 373 毫秒
1.
Concerning the transparent blue calcite crystals of blue marble from Madagascar, this work suggests that their cavities, accessorial quartz, and marble stress textures do not provide unambiguous characterization of the blue color compared to other white marbles. It is suggested that the presence of stronium (~850 ppm), barium (~18 ppm), vanadium (~10 ppm), and nickel (~2 ppm) might be considered influential chromophores for the blue color. Blue marble aliquots were characterized to determine their mineralogical, textural, and chemical composition to elucidate luminescence spectra and the causes of the blue color by use of different techniques.  相似文献   

2.
Micro‐Raman spectroscopy is applied for the first time to identify mineralogical characteristics of ceramic bodies and red coatings on decorative cord‐marked pottery (ca 2600–1700 B.C.) from an archeological site in northern Taiwan. X‐ray diffraction and scanning electron microscopy‐energy dispersive X‐ray spectrometry were used as complementary techniques. The combined results of mineralogical and elemental composition suggest that the pottery items were produced from illitic clays and fired to a temperature less than 800 °C under oxidizing conditions. The slight discrepancy in composition between the red coatings and ceramic bodies possibly indicates a somewhat different source of raw materials and/or clay refining processes used by ancient potters. Additionally, feldspar, hornblende, and pyroxenes detected in the samples are closely related to the main compositions of nearby volcanic rocks, implying that the raw materials could have come from a local source. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Most of the artworks constituting the collection of Renaissance statuary of Abatellis Palace in Palermo (Sicily) show evidence of colour layers and fragments of gold foil that probably once covered the whole marble surface. The restoration of some of these statues has allowed to carry out archaeometric studies about the painting technique and to highlight the original materials and inclusion present on the precious marbles by two famous Italian sculptors of the Renaissance, Francesco Laurana and Antonello Gagini. The measurements have been performed in situ through the integrated use of two non‐invasive techniques: visible fluorescence stimulated by ultraviolet light and X‐ray fluorescence. The ultraviolet‐induced fluorescence analysis has provided additional information on the conservation status of marble surfaces by differentiating the pictorial materials and highlighting the presence of gilding and pigment traces through their characteristic fluorescence response. The observation in ultraviolet light has been used as valuable guide for the identification of the significant points to be analysed by X‐ray fluorescence to characterise the original materials. X‐ray fluorescence measurements have cast light about their chemical composition and stratigraphical structure. Pictorial layers were identified: vermilion for red layers, blue pigment based on copper for blue layers and pure gold leaf for gilding layers. Principal component analysis of the data was capable of clustering the different painting materials, discriminating through their chemical content. The results represent an important scientific support both to the hypotheses about the original look of the artworks and to the resolution of restoration and conservation questions still open. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
A compositional study of twenty-two marble artefacts from the medieval Benedictine Abbey of San Caprasio at Aulla (North-western Tuscany, Central Italy) has been carried out. The mineralogical and petrographic analyses, the estimation of the maximum grain size of the calcite crystals, and the determination of carbon and oxygen stable isotopes support a provenance of most marbles from the Apuan Alps quarries (Italy). Only some marbles indicate a probable provenance from the islands of Paros and Thasos in the eastern Mediterranean area.  相似文献   

5.
This paper addresses the chemical characterisation of silicon carbide‐based grinding tools. These are among the most widely used grinding tools in the ceramic sector, and instruments are required that enable the grinding tool quality to be controlled, despite the considerable complexity involved in determining grinding tool chemical composition. They contain components of quite different nature, ranging from the silicon carbide abrasive to the resin binder. To develop the analysis method, grinding tools containing silicon carbide with different grain sizes were selected from different tile polishing stages. To develop the grinding tool characterisation method, the different measurement process steps were studied, from sample preparation, in which different milling methods (each appropriate for the relevant type of test) were used, to the optimisation of the determination of grinding tool components by spectroscopic and elemental analyses. For each technique, different particle sizes were used according to their needs. For elemental analysis, a sample below 150 µm was used, while for the rest of the determinations a sample below 60 µm was used. After milling, the crystalline phases were characterised by X‐ray powder diffraction and quantified using the Rietvel method. The different forms of carbon (organic carbon from the resin, inorganic carbon from the carbonates and carbon from the silicon carbide) were analysed using a series of elemental analyses. The other elements (Si, Al, Fe, Ca, Mg, Na, K, Ti, Mn, P and Cl) were determined by wavelength‐dispersive X‐ray fluorescence spectrometry, preparing the sample in the form of pressed pellets and fused beads. The chemical characterisation method developed was validated with mixtures of reference materials, as there are no reference materials of grinding tools available. This method can be used for quality control of silicon carbide‐based grinding tools. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
ABSTRACT

In this paper, the radiation shielding parameters such as linear attenuation coefficients (LAC, µ), mass attenuation coefficients (MAC, µ/ρ), effective atomic numbers (Zeff), effective electron densities (Neff), half value of layers (HVL), mean free paths (MFP) and buildup factors (exposure (EBF) and energy absorption (EABF)) were investigated for cream (M1), pink (M2), white (M3), maroon (M4) and green (M5) marbles. Attenuation coefficients were measured in the energy region 31.18–661.66 keV photon energies. The values of Zeff and Neff were then calculated using these coefficients with logarithmic interpolation method, and HVLs and MFPs were calculated using the values of LAC of marble samples at the same photon energies. The experimental results were compared with the theoretical values obtained from WinXCom program, and good agreements were observed between the experimental and theoretical results. HVLs and MFPs of all marble samples were compared with those of some concretes, glasses and commercial radiation shielding glasses (SCHOTT Co.). The studied marbles were better radiation shielding materials than standard shielding concretes due to lower HVL and MFP values lower than the ordinary concrete. Finally, EBFs and EABFs of the marbles were calculated in the energy region 0.015–1?MeV up to penetration depths of 40 mfps by Geometric Progression method (G-P), and the results were discussed in terms of photon energies and chemical compositions of the marbles.  相似文献   

7.
ZnO nanoflowers were synthesized on conductive flexible textile fabric substrate by using the simple low‐temperature aqueous chemical growth method and were used for piezoelectric energy harvesting source. Structural characterization of ZnO nanoflowers was carried out by using surface scanning electron microscopy and X‐ray diffraction. The ZnO nanoflowers are uniformly grown over the entire sample. They are composed of needle‐like nanorods, which have hexagonal wurtzite structure with good crystalline quality. The current–voltage characteristics showed good rectifying Schottky behaviour. Contact‐mode atomic force microscopy was used for measuring the piezoelectric output potential. The maximum output potential was found to be more than 600 mV and the corresponding current also recorded was near ~650 nA. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Argillaceous rocks are considered as suitable host rock formation to isolate the high‐level radioactive waste from the biosphere for thousands of years. Boda Claystone Formation, the possible host rock formation for the Hungarian high‐level radioactive waste repository, has geologically and mineralogically been studied in detail, but its physico‐chemical parameters describing the retention capability of the rock needed further examinations. Studies were performed on thin sections subjected to 72 h sorption experiments using inactive Nd(III). Nd(III) has been used as a chemical analogue for transuranium elements of the radioactive waste to examine the ion uptake capability of the micrometre size mineral phases occurring in the rock. The elemental mapping of synchrotron radiation‐based microscopic X‐ray fluorescence (micro‐XRF) combined with scanning electron microscopy energy dispersive X‐ray analysis (SEM/EDX) has sufficient sensitivity to study the uptake capability of the different mineral phases on the microscale without the necessity of applying radioactive substances. Elemental maps were recorded on several thousand pixels using micrometre magnitude spatial resolution. By interleaving micro‐XRF and SEM/EDX data sets from the same sample area and applying multivariate methods, calcite and clay minerals could be identified as the main mineral phases responsible for Nd(III) uptake without using additional microscopic X‐ray diffraction mapping. It should be highlighted that the ion uptake capability of dolomite containing calcium and magnesium could be distinguished from the characteristics of calcite only by the interleaving of micro‐XRF and SEM/EDX data sets. The presence of minerals was verified by applying microscopic X‐ray diffraction point measurements. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Mixed Cu–Ag alloys with different compositions have been produced and subjected to an accelerated sulphidation process which causes the development of a mixed sulphide‐rich corroded film on their surface. It was called tarnishing, that is, the formation of a blue‐brownish patina when Cu–Ag alloys are exposed in a sulfur‐containing atmosphere. The structures of the pristine alloys have been determined by the combined analytical techniques as scanning electron microscopy energy dispersive X‐ray microanalysis and X‐ray diffraction. The experimental conclusions confirmed the occurrence of micro phase separation with the formation of different dendritic domains of about 10 µm in width. The sulphidized samples were firstly investigated by optical microscopy and X‐ray diffraction in order to verify the homogeneity of the patina and to identify the different AgCuS phases appearing on the alloy surfaces. It was observed that, despite the inherent micro‐heterogeneity of the alloys, the sulphide layer was throughout uniform in composition at the micro‐scale. The complex scenario of the relative stability of all the various mixed sulphides involved was then explored by micro‐Raman spectroscopy (μ‐RS), pointing out that the Cu‐for‐Ag substitution in the crystal lattice of the mixed Ag–Cu sulphides caused a monotonous blue shift of the vibrational wavenumbers in Raman spectra. This study has unveiled microscopic details of the tarnishing process, furnishing an innovative, cheap and non‐destructive methodology based on μ‐Raman spectroscopy for the evaluation of the silver‐copper artefacts via the compositions of their corroded products. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
On the basis of fundamental parameter approaches, the validity of standardless wavelength dispersive X‐ray fluorescence (WDXRF) and X‐ray powder diffraction algorithms was confirmed for analyzing Egyptian iron ore samples collected from two different locations, Aswan and Baharyia. The studied Egyptian iron ores represent different depositional environments and consequently exhibit variable mineralogical and chemical compositions. In the case of WDXRF analysis, the ground powders of iron ore samples were mixed and pressed with low contamination binder in a mass ratio of wax: sample = 4: 0.9 g at 120 kN cm?2. A standardless method for quantitative WDXRF was employed, which requires accurate determination of the amount of organic material in the sample. On the basis of differential thermal analysis, a new method is introduced for the determination of loss of ignition. With the application of the proposed method and standardless quantitative analysis, results for 12 elements in iron ores were obtained: Fe, Mn, Mg, Si, Al, Ca, Na, K, S, Ba, Zn, and Cl. The reliability and precision of the adopted procedure were tested against a standard reference material ‘Iron ore concentrate (SRM 690, NIST, USA)’. The quantitative analysis results of the certified reference material were found acceptable. Depending on the WDXRF results, the powder samples were directly introduced to X‐ray powder diffraction goniometry, and the phase compositions were quantitatively determined by using a standardless analysis program based on Rietveld method. The main phases of all iron ore samples are the hematite and goethite, whereas other phases are found with varying ratios, namely quartz, nordstrandite, rhodochrosite, kaolinite, todorokit, bassanit, andydrite, and hydroxyapatite. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, a multi‐technique approach, at different scale of observation, is used to characterize a group of decorative stones and to permit to distinguish rocks with similar aspect but coming from different areas. In particular, the samples under study are sedimentary and metamorphic rocks, widely used as building blocks of modern and historical constructions and sculptures. The petrographic and mineralogical features of such rocks were performed by optical microscopy and Raman and Fourier transform infrared absorbance spectroscopies. These techniques permitted to obtain a complete structural, textural, and mineralogical characterization. At elemental level, the investigation was carried out by X‐ray fluorescence (XRF). In particular, XRF and Raman measurements were collected using portable instrumentations, whose advantages for the in situ analysis have been pointed out. The obtained results evidenced the high discriminant capability of the portable XRF for the decorative stones especially when this method is coupled with mineralogical and petrographic information. In this context, we propose to create a database for precious ornamental stones, which could be a starting point for a non‐destructive characterization, even useful for provenance study and/or certification of origin. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Hydroxyapatite (HA), beta‐tricalcium phosphate and bioactive glasses are commonly used as reabsorbable biomaterials, mainly in orthopaedics and dentistry. The performance of each material depends on many factors, in particular, on their chemical and phase composition, microstructure, granule size and pore volume. For this reason, it is important to have a full characterization that allows correlating these properties with the material biological behaviour. In this work, three commercial samples of materials currently used in dentistry as bone substitutes were characterized. Granules corresponding to bovine and synthetic HA and bioactive glass 45S5 type were studied by scanning electron microscopy, conventional and synchrotron radiation X‐ray diffraction and X‐ray fluorescence. The specific surface area was also obtained by the Brunauer, Emmett and Teller method. We observed that Ca/P molar ratios for both HAs are higher than the value corresponding to the stoichiometric HA. The coherent domain obtained for the bovine HA is larger along the c axis crystal direction, and it is around 15 times lower than the value corresponding to the synthetic HA. The specific surface area for the bovine HA is one of the highest values reported in literature. Low amounts of crystalline CaO were observed only for the synthetic HA sample. Crystalline combeite and wollastonite were detected for the bioactive glass sample and quantified by using rutile as internal standard. The relation between the physico‐chemical characterization performed in this work and the potential biological response of the materials is discussed in terms of the information available in literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
We used surface‐enhanced Raman spectroscopy (SERS) to investigate ultrastructural changes in cell‐wall composition during the self‐repair of lacerated hypocotyls of Phaseolus vulgaris var. saxa. A detailed study of self‐repair mechanisms requires localized information about cell‐wall structure and morphology in addition to the chemical cell‐wall composition. Characteristic Raman and SER spectra yielded two‐dimensional maps of cross sections of P. vulgaris var. saxa visualizing chemical compositions in the walls of different cell types and during various repair phases. SERS substrate particles were produced by the reduction of gold chloride on the plant tissue surface and characterized with absorption spectroscopy, scanning electron microscopy and energy‐dispersive X‐ray spectroscopy. The SERS results were compared with stained cross sections of the same plant using dark‐field microscopy with focus on lignin and suberin contents in repairing cells. In addition, SERS measurements revealed Au cyanide compounds on the cell surface, indicating the formation of hydrogen cyanide during the self‐repair phase. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The ability to probe morphology and phase distribution in complex systems at multiple length scales unravels the interplay of nano‐ and micrometer‐scale factors at the origin of macroscopic behavior. While different electron‐ and X‐ray‐based imaging techniques can be combined with spectroscopy at high resolutions, owing to experimental time limitations the resulting fields of view are too small to be representative of a composite sample. Here a new X‐ray imaging set‐up is proposed, combining full‐field transmission X‐ray microscopy (TXM) with X‐ray absorption near‐edge structure (XANES) spectroscopy to follow two‐dimensional and three‐dimensional morphological and chemical changes in large volumes at high resolution (tens of nanometers). TXM XANES imaging offers chemical speciation at the nanoscale in thick samples (>20 µm) with minimal preparation requirements. Further, its high throughput allows the analysis of large areas (up to millimeters) in minutes to a few hours. Proof of concept is provided using battery electrodes, although its versatility will lead to impact in a number of diverse research fields.  相似文献   

15.
Archaeological finds of Neolithic to Iron Age pottery show clay potsherds characterized by red cord‐markings. The items date back from 5500 to 1500 B.P. To better understand temporal changes in the provenance of raw‐material sources, and the nature of materials used in the red colorant and ceramic bodies, micro‐Raman spectroscopy, X‐ray diffraction analysis (XRD), and micro X‐ray florescence spectroscopy (μXRF) were applied to 29 red‐coated potsherd samples found at twelve archaeological sites across Taiwan. The techniques identified the chemical and mineralogical composition of the red coatings and ceramic bodies as well as the production methods of ancient potters. Eighteen mineral phases were identified from the Raman spectra, including hematite, α‐quartz, and anatase. Feldspar, rutile, pyroxenes, calcite, gypsum, amorphous carbon, and graphite were also detected. XRD measurements, and μXRF analyses were used as complementary techniques to obtain mineral and chemical compositions. Hematite, anatase, calcite, plagioclase feldspar, and illite were present in potsherds, suggesting pottery produced from illitic clays fired at less than 850 °C under oxidizing conditions. Results further suggest that raw materials were sourced from or near local volcanic rock areas, and more broadly from metamorphic or sedimentary rocks and clays. Chemically, raw materials used for red coatings are different to those of the ceramic bodies. Objects from most sites used the same raw material sources; however, some sites contain objects made from changing sources over time. Pot coatings exhibit polygonal cracks, and loosened cementation strongly suggesting that finely processed moist clays were fired to a biscuit form with no second stage firing process. The non‐destructive Raman experiments identified and characterized mineral phases, which helped understand manufacturing techniques. Overall the multi‐technique approach gave extensive information on the finds, helping to differentiate raw material sources and production technologies. This approach is an important and effective method for investigating archaeological finds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A characterization of ashes obtained by thermal treatments on greenhouse crops plant biomass residues is presented. The chemical analysis, by X‐ray fluorescence (wavelength‐dispersive X‐ray fluorescence), and phase analysis, by X‐ray diffraction, of the resultant ashes are reported. Thermal treatments of selected samples of these residues increase the relative amounts of inorganic Mg, Si, P, and S in the ashes, being these amounts as high as increasing temperature. As an opposite effect, Na, Cl, and K contents decrease as increasing temperature by a volatilization process of the chlorides, as confirmed by X‐ray diffraction. The crystalline phase analysis of the ashes demonstrates the formation of inorganic constituents of the biomass, including alkaline chlorides and calcium salts (calcite, anhydrite, and apatite). Progressive thermal treatments induce the formation of new silicate phases (akermanite and grossularite) and silica (α‐quartz and cristobalite). Furthermore, the particle size of the starting biomass samples does not influence the evolution of the crystalline phases by thermal treatments. In contrast, a previous leaching using water and subsequent heating at 1,000 °C produces the formation of periclase (MgO), lime (CaO), and the silicate gehlenite, without the presence of anhydrite. This study is interesting for future investigations on the residues as a profitable biomass source for energy production and sustainable large‐scale management. Some potential applications of the resultant ashes can be proposed.  相似文献   

17.
Point‐to‐point micro‐Raman and X‐ray diffraction (XRD) techniques were employed for characterization of minerals present in the pottery body of 27 glazed Byzantine and Ottoman pottery shreds, excavated at two different archaeological sites in the Republic of Macedonia: in Skopje (Skopsko Kale) and in Prilep (Markovi Kuli and Sv. Atanas Church). The Raman spectra of 18 Byzantine samples (dating from 12th−14th century) and nine Ottoman samples (dating from 17th−19th century) revealed 26 different minerals. XRD measurements were further performed on the same powder samples to validate the mineralogical assessment obtained by point‐to‐point micro‐Raman spectroscopy. Although only 13 different mineral phases were obtained by the XRD, the results obtained from the Raman and XRD spectra for the most abundant minerals in the investigated pottery bodies match quite well. However, the identification of the less abundant minerals in the clay matrixes from the XRD data was very difficult, if at all possible. The results emphasize the specifics of the applied techniques and their limits. Additionally, wavelength dispersive X‐ray fluorescence spectroscopy was used for the elemental analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
19.
The research of soil contamination by heavy metal is an important field due to its environmental and health implications. The goal was to study the elemental mobility as a function of depth. For this reason, the distribution of heavy metals (V, Cr, Co, Ni, Cu, Zn, As, Sn, and Pb) was investigated along soil profiles up to a depth of 15 m at 9 sampling sites in the Nilufer industrial district (Bursa, Turkey). Elemental analyses were done with the Epsilon 5 energy dispersive X‐ray fluorescence and inductively coupled plasma mass spectrometry equipment. Particle analysis was performed with a JEOL scanning electron microscope equipped with a Si(Li) X‐ray detector. The crystallographic compositions of oxide compounds in soil samples were identified by a Rigaku X‐ray diffraction instrument. Different parameters such as the soil's chemical (mineralogical structure, pH, and electrical conductivity) and physical properties (the number of blows, the stiffness index, the liquidity index, the plasticity index, and the water content) were analyzed. To assess the mobility of the heavy metals, diffusion (D) and convection coefficients (?) were calculated with the finite difference method. Convection was determined to dominate the studied region. In addition, the mobility coefficient was determined for each metal. High mobilities were determined for Zn and V, moderate mobilities for Cr, Ni, Cu, and As, and low mobilities were determined for Co and Pb. The results revealed that elements had reached depths of up to 15 m, causing irreversible soil contamination that may lead to environmental health issues.  相似文献   

20.
This study aims to reveal the production technology of some representative samples of possible Ninevite‐5 potsherds which are generally dated between the Early Jezirah I to EJ‐II/EJ‐III periods (roughly 3000–2500 bc ) and accepted as the typical ceramics reflecting the northern Mesopotamian culture in the first half of the 3rd millennium BC. The samples were selected from the archeological excavation area of Kuriki (upper Tigris region, Turkey) and exposed to multiple analytical techniques including scanning electron microscopy with an energy dispersive spectrometer, optical microscopy, and polarized energy dispersive X‐ray fluorescence spectrometry. The results showed that all the samples have high amounts of CaO (up to 29.83 wt.%) indicating use of calcareous clay deposits and they have an analogous chemical compositions in terms of both major oxides and trace elements which implied the use of the same raw materials. The vitrification degrees of the samples, examined by back scattered electron images, suggested that the firing temperature of the potsherds did not exceed the range of 800–900°C. It was also revealed that the firing atmosphere was oxidative which would be attributed to use of kiln firing rather than a bonfire or pit firing. Both the chemical and petrographic results suggested that the investigated samples presumably belong to a regional (upper Tigris) production rather than a local one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号