首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Four metal‐organic coordination polymers [Cd(4‐bpcb)1.5Cl2(H2O)] ( 1 ), [Cd(4‐bpcb)0.5(mip)(H2O)2] · 3H2O ( 2 ), [Co(4‐bpcb)(oba)(H2O)2] ( 3 ), and [Ni(4‐bpcb)(oba)(H2O)2] ( 4 ) [4‐bpcb = N,N′‐bis(4‐pyridinecarboxamide)‐1, 4‐benzene, H2mip = 5‐methylisophthalic acid, and H2oba = 4, 4′‐oxybis(benzoic acid)] were synthesized under hydrothermal conditions and characterized by single‐crystal X‐ray diffraction, elemental analyses, IR spectroscopy, powder X‐ray diffraction, and TG analysis. In complex 1 , two Cl anions serve as bridges to connect two Cd‐(μ1‐4‐bpcb) subunits forming a dinuclear unit, which are further linked by μ2‐bridging 4‐bpcb to generate 1D zigzag chain. Complex 2 shows a 2D 63 network constructed by [Cd‐mip]n zigzag chains and μ2‐bridging 4‐bpcb ligands. Complexes 3 and 4 are isostructural 2D (4, 4) grid networks derived from [M‐oba]n (M = Co, Ni) zigzag chains and [M‐(4‐bpcb)]n linear chains. The 1D chains for 1 and the 2D networks for 2 – 4 are finally extended into 3D supramolecular architectures by hydrogen bonding interactions. The roles of dicarboxylates and central metal ions on the assembly and structures of the target compounds were discussed. Moreover, the thermal stabilities, photoluminescent properties, and photocatalytic activities of complexes 1 – 4 and the electrochemical properties of complexes 3 and 4 were investigated.  相似文献   

2.
Abstract. Two bis‐triazole‐bis‐amide‐based copper(II) pyridine‐2,3‐dicarboxylate coordination polymers (CPs), [Cu(2,3‐pydc)(dtb)0.5(DMF)] · 2H2O ( 1 ) and [Cu(2,3‐pydc)(dth)0.5(DMF)] · 2H2O ( 2 ) (2,3‐H2pydc = pyridine‐2,3‐dicarboxylic acid, dtb = N,N′‐bis(4H‐1,2,4‐triazole)butanamide, and dth = N,N′‐bis(4H‐1,2,4‐triazole)hexanamide), were synthesized under solvothermal conditions. CPs 1 and 2 show similar two‐dimensional (2D) structures. In 1 , the 2,3‐pydc anions bridge the CuII ions into a one‐dimensional (1D) chain. Such 1D chains are linked by the dtb ligands to form a 2D layer. The adjacent 2D layers are extended into a three‐dimensional (3D) supramolecular architecture by hydrogen‐bonding interactions. The electrochemical properties of 1 and 2 were investigated.  相似文献   

3.
Three coordination compounds with dimensions from 0D to 2D, namely, [Co(bppdca)2(HL1)2] ( 1 ) [Co(bppdca)(L2)(H2O)] · 2H2O ( 2 ) and [Co(bppdca)(L3)] · 3H2O ( 3 ) [bppdca = N,N′‐bis(pyridine‐3‐yl)pyridine‐2,6‐dicarboxamide, H2L1 = 2,5‐pyridinedicarboxylic acid, H2L2 = 4,4′‐oxybisbenzoic acid, H2L3 = 2‐carboxymethylsulfanyl nicotinic acid] were hydrothermally synthesized and structurally characterized. Single crystal X‐ray diffraction analysis reveals that complex 1 is a discrete 0D complex, in which the bppdca ligand and the H2L1 act as the terminal groups to coordinate with the CoII ions. In coordination polymer 2 , two bppdca ligands coordinate in anti configuration with two CoII ions to generate a 28‐membered Co2(bppdca)2 loop, which is further extended into 1D ladder‐like double chain by pairs of L2 ligands. In 3 , the CoII ions are linked by bppdca ligands to generate 1D wave‐like chain, which is further connected by the L3 to form a 2D network. Finally, the coordination compounds 1 – 3 are extended into 3D supramolecular frameworks through the hydrogen bonding interactions. The CoII ions and the bppdca ligands in the title coordination compounds exhibit different coordination characters and conformations. The effect of organic dicarboxylates with different rigidity and length on the structures of CoII coordination compounds was investigated. In addition, the fluorescence and electrochemical behaviors of coordination compounds 1 – 3 were reported.  相似文献   

4.
Two nickel(II) coordination polymers, formulated as {[Ni2(bix)2(tbta)2(H2O)4] · 0.25H2O}n ( 1 ) and [Ni2(bix)(aip)2(H2O)2]n ( 2 ) [bix = 1, 4‐bis(imidazol‐1‐ylmethyl)benzene, H2tbta = tetrabromoterephthalic acid, H2aip = 5‐aminoisophthalic acid] were synthesized under hydrothermal conditions and structurally characterized by single‐crystal X‐ray diffraction methods, IR spectroscopy, TGA, and elemental analysis. Complex 1 exhibits a 2D (4, 4) layer with {44.62} topology. Complex 2 shows 2D (3, 4)‐connected 3 , 4L83 sheets, which are finally extended into an unusual (5, 6)‐connected 3D supramolecular network by classic hydrogen bond interactions. Fluorescence, UV/Vis diffuse reflection spectra, and catalytic properties of two complexes for the degradation of the methyl orange dye in a photo‐Fenton‐like process were investigated.  相似文献   

5.
Two MnII coordination polymers based on the flexible bis(benzimidazole) and dicarboxylic acids, namely, [Mn(L1)(bpdc)(H2O)0.5]n ( 1 ) and [Mn(L2)(Htbi)2]n ( 2 ) [L1 = 1,4‐bis(5,6‐dimethylbenzimidazol‐1‐ylmethyl)benzene, H2bpdc = 4,4′‐biphenyldicarboxylic acid, L2 = 1,4‐bis(5,6‐dimethylbenzimidazole)butane, H2tbi = 5‐tert‐butyl isophthalic acid] were hydrothermally synthesized and characterized by elemental analysis, IR spectroscopy, as well as single‐crystal X‐ray diffraction. Both of the complexes crystallize in the triclinic P$\bar{1}$ space group and present distorted octahedral configurations. Complex 1 possesses a 2D binodal (3,5)‐connected 3,5L2 network with the point symbol of (42.67.8)(42.6), whereas 2 features a 2D uninodal 3‐connected hcb topology and the Schläfli symbol is (63). Complexes 1 and 2 ultimately are extended into 3D supramolecular framework via π–π stacking and O–H ··· O hydrogen bonding interaction, respectively. Moreover, both of the complexes manifest excellent catalytic activities for the degradation of Congo red.  相似文献   

6.
The reaction of Ag2SO4 and bpp (bpp = 1,3‐bis(4‐pyridyl)propane) in H2O afforded the complex [Ag2(bpp)2(SO4) · 6.5H2O·CH3OH]n, 1. The IR and TGA have been recorded and the structure has been determined. Crystal data for 1: Space group C2/c, a = 17.885(4), b = 25.230(6), c = 8.832(2) Å, β = 105.437(4)°. V = 3841(1) Å3, Z = 8 with final residuals R1 = 0.0710 and wR2 = 0.1620. The complex shows a three‐dimensional supramoleclar structure constructed with two‐dimensional infinite [Ag2(bpp)2]n sheetlike layers pillared by Ag‐Ag interactions and Ag····O (SO4) interactions in the solid state.  相似文献   

7.
The complexes [Co(L1)(mpy)] ( 1 ), [Ni(L1)(mpy)] ( 2 ), [Co(L1)(tbpy)] · 2H2O ( 3 ), [Ni2(L1)2(tbpy)2] · 5H2O ( 4 ), [Mn2(L1)2(tbpy)2] · 3H2O ( 5 ), [Mn(L1)(biim‐3)] ( 6 ), [Ni2(L1)2(btb)2(H2O)] · 2H2O ( 7 ), [Cu(L2)(mpy)] · 7H2O ( 8 ), [Co(L2)(tbpy)(H2O)] ( 9 ), [Ni(L2)(tbpy)(H2O)] · H2O ( 10 ), [Cu(L2)(bib)] · 2H2O ( 11 ), and [Cu(L2)(btb)] · 2H2O ( 12 ) [H2L1 = (3‐carboxyl‐phenyl)‐(4‐(2′‐carboxyl‐phenyl)‐benzyl)ether, H2L2 = 3‐carboxy‐1‐(4′‐carboxybenzyl)‐2‐oxidopyridinium, mpy = 2‐(4‐(4′‐methylphenyl)‐6‐(pyrindin‐2‐yl)pyridin‐2‐yl)pyridine), tbpy = 2‐(4‐(4′‐tert‐butylphenyl)‐6‐(pyrindin‐2‐yl)pyridin‐2‐yl)pyridine), biim‐3 = 1,3‐bis(imidazol‐1′‐yl)propane, btb = 1,4‐bis(1,2,4‐triazol‐1‐ylmethyl)benzene, bib = 1,4‐bis(imidazol‐1′‐ylmethyl)benzene] were synthesized. Compounds 1 – 6 have similar 1D chain structures, which are further linked by π–π interactions to generate supramolecular double chains for 1 and 2 , and supramolecular layers for 3 – 6 . Compound 7 displays a 3D 6‐connected framework with (44 · 611) topology. Compound 8 features a monomolecular structure, which is further linked by hydrogen bonds between the lattice water molecules and carboxylate oxygen atoms of L2 anions to form a 2D supramolecular layer. The monomolecular structures of 9 and 10 are connected by hydrogen bonds and π–π interactions simultaneously to generate supramolecular layers. Compounds 11 and 12 show layer structures.  相似文献   

8.
The reaction of Zn(NO3)2‐6H2O, NH4SCN and bpp (bpp = 1,3‐bis(4‐pyridyl)propane) in CH3OH afforded the complex [Zn(NCS)2(bpp)]n, 1 , while the reaction of Zn(ClO4)2‐6H2O and bpp in CH3OH afforded the complex [Zn(ClO4)2(bpp)2]n, 2 . Both complexes have been characterized by spectroscopic methods and their structures have been determined by X‐ray crystallography. Crystal data for 1 : Orthorhombic, space group P21212, a= 12.857(6), b = 14.822(7), c = 4.820(2) Å, β = 90°, V = 918.5(8) Å3, Z = 2 with final residuals R1 = 0.0747 and wR2 = 0.1657. Crystal data for 2 : Tetragonal, space group I4/mcm, a = 11.612(1), b = 11.612(1), c = 23.247(9) Å, β = 90°, V = 3135(1) Å3, Z = 4 with final residuals R1 = 0.0523 and wR2 = 0.1064. The coordination polymers display a variety of structural architectures, ranging from zigzag chains ( 1 ) and one‐dimensional channel‐type architectures ( 2 ). The effects of the orientation of the nitrogen atom in the pyridine rings on the resultant structures are discussed.  相似文献   

9.
Two cobalt(II) coordination polymers, namely {[Co(HO‐BDC)(bbe)] · (H2O)}n ( 1 ), and {[Co(O‐BDC)(bbp)] · (H2O)}n ( 2 ) (HO‐H2BDC = 5‐hydroxyisophthalic acid, bbe = 1, 2‐bis(benzoimidazol‐2‐yl)ethane, and bbp = 1, 3‐bis(benzoimidazol‐2‐yl)propane) were synthesized under hydrothermal conditions, and characterized by elemental analyses, IR spectroscopy, single‐crystal X‐ray diffraction, and thermogravimetric analyses. Compound 1 is a 1D chain, whereas 2 is a (3, 3)‐connected 2D network with (63) topology. These two 1D and 2D complexes are further connected by hydrogen bonds to form the 3D supramolecular architectures. The electrochemical lithium‐ion storage properties of the as‐made Co3O4 by calcination of 1 are investigated in detail.  相似文献   

10.
Three metal‐organic coordination polymers, namely {[Cd(L1)(1,2‐chdc)] · 2H2O}n ( 1 ), {[Ni(L2)(1,2‐chdc)] · H2O}n ( 2 ), and [Cd(L2)(npht)]n ( 3 ) [L1 = 1,2‐bis(2‐methylbenzimidazol‐1‐ylmethyl)benzene, L2 = 1,2‐bis(5,6‐dimethylbenzimidazol‐1‐ylmethyl)benzene, 1,2‐H2chdc = 1,2‐cyclohexanedicarboxylic acid, H2npht = 3‐nitrophthalic acid] were synthesized under hydrothermal conditions and structurally characterized by single‐crystal X‐ray diffraction methods, IR spectroscopy, TGA, and elemental analysis. In compound 1 , two 1,2‐chdc2– ligands connect two neighboring Cd atoms to form a dinuclear [Cd2(1,2‐chdc)2] subunit, which is further linked by L1 ligands to construct a 1D ladder‐like chain. Compound 2 exhibits a 2D (4,4) coordination network with {44.62} topology, whilst compound 3 shows a 1D helical chain structure. The fluorescence, UV/Vis diffuse reflection spectra, and catalytic properties of complexes 1 – 3 for the degradation of the congo red azo dye in a Fenton‐like process are investigated.  相似文献   

11.
Two new ZnII coordination polymers (CPs), [Zn2(SA)2(L)2]n ( 1 ) and [Zn(AA)(L)]n ( 2 ) [L = 1,6‐bis(benzimidazol‐1‐yl)hexane, H2SA = succinic acid, H2AA = adipic acid], were synthesized via hydrothermal method and characterized by elemental analysis, infrared spectroscopy, and single‐crystal X‐ray diffraction. CP 1 possesses a sql network, which is further extended into a 3D supramolecular skeleton by non‐classical C–H ··· O hydrogen bonding interactions. CP 2 exhibits a 1D linear chain, which is further assembled into a 2D supramolecular layer by π ··· π stacking interactions. The solid state fluorescence properties of two ZnII CPs were investigated. Both CPs present high photocatalytic activities for the degradation of methylene blue (MB) under UV light irradiation. The photodegradation efficiency using CP 1 as catalyst is 91.3 % and using CP 2 as catalyst is 85.0 %, respectively.  相似文献   

12.
Three new mixed‐ligand coordination polymers of CuII, namely, [Cu(Fbtx)(L1)(H2O)]n ( 1 ), [Cu(Fbtx)0.5(HL2)(H2O)2]n ( 2 ), and {[Cu(Fbtx)1.5(HL3)(H2O)] · H2O}n ( 3 ) [Fbtx = 2,3,5,6‐tetrafluoro‐1,4‐bis(1,2,4‐triazole‐1‐ylmethyl)benenze, H2L1 = terephthalic acid, H3L2 = trimesic acid, NaH2L3 = 5‐sulfoisophthalic acid monosodium salt], were hydrothermally synthesized and structurally characterized by elemental analysis, IR spectra, and single‐crystal and powder X‐ray diffraction techniques. All the complexes have a two‐dimensional (2D) coordination layer structure. Of these, 1 displays a planar 44‐ sql structure whereas both 2 and 3 are highly undulated 63‐ hcb nets. Moreover, their thermal stability and catalytic behaviors in the aerobic oxidation of 4‐methoxybenzyl alcohol were also investigated as well. The results indicate that the benzene dicarboxylate ligands have an effective influence on the structures and catalytic properties of the resulting coordination polymers.  相似文献   

13.
Abstract. Two cadmium(II) coordination polymers, {CdL2[(CH3)2NH2]2 · 2DMF}n ( 1 ) and {[Cd3L4[(CH3)2NH2]2] · EtOH · 2DMF}n ( 2 ) were synthesized from the solvothermal reactions of Cd(OAc)2 · 2H2O with 3,3′‐(diazenediyl)dibenzoic acid (H2L) in different solvents. Both complexes were characterized by elemental analysis, IR spectroscopy, powder X‐ray diffraction, TG analysis, and single‐crystal X‐ray diffraction. In compound 1 , central cadmium(II) atoms were linked with the surrounding L ligands to generate an infinite 1D chain with repeated rings. Compound 2 displayed a 3D threefold interpenetrating framework based on cage‐like [Cd3L6]8 species and exhibited a 41263 topological structure. The results demonstrated that the different solvents had significant effect on the construction of different coordination compounds from the same components. In addition, they exhibited excellent stability and good photocatalytic activity towards the degradation of methylene blue in aqueous solution under UV irradiation.  相似文献   

14.
A unique 3‐D PbII coordination polymer containing ligands 1,2‐bis(4‐pyridyl)ethylene (bpe) and 3‐sulfobenzoate (3‐sb), [Pb(3‐sb)(bpe)0.5]n ( 1 ) has been synthesized by hydrothermal reaction and characterized by elemental analysis, IR, TGA, 1H NMR, powder X‐ray analysis, and fluorescent spectrum. The single‐crystal X‐ray analysis shows that eight coordination bonds can be divided as five primary bonds and three secondary bonds. The secondary bonds largely enhance the solid stability and provide a high‐dimensional network assembly. The complex also displays strong fluorescent property.  相似文献   

15.
Under hydrothermal conditions, three new AgI coordination polymers, [Ag(L1)(Hmip)]n ( 1 ), [Ag(L2)0.5(ndc)0.5]n ( 2 ), and {[Ag(L3)0.5(Htbi)] · 0.25H2O}n ( 3 ) [H2mip = 5‐methylisophthalic acid, L1 = 1,4‐bis(2‐methylbenzimidazol‐1‐ylmethyl)benzene, H2ndc = 2,6‐naphthalenedicarboxylic acid, L2 = 1,3‐bis(2‐methylbenzimidazol‐1‐ylmethyl)benzene, H2tbi = 5‐tert‐butyl isophthalic acid, L3 = 1,4‐bis(5,6‐dimethylbenzimidazole)butane] were synthesized by employing flexible bis(benzimidazole) and dicarboxylic acid ligands. Polymer 1 displays a 2D 4‐connected 4L2 underlying net topology with the point symbol of (65.8) in standard representation. Compound 2 possesses a 2D uninodal 4‐connected Shubnikov tetragonal plane net (sql) based on a dinuclear AgI clusters with the point symbol (44.62), which is further extended into a 3D supramolecular framework by π–π interactions. Compound 3 possesses dinuclear molecular complex groups, which form chains by weak Ag–O (2.6 Å) coordination bonds, and further assembled into a 2D supramolecular layer by hydrogen bonds and π–π stacking interactions. These complexes exhibit intense fluorescent emissions in solid state. UV/Vis diffuse reflection spectra and the excellent catalytic activity for the degradation of the congo red azo dye in a Fenton‐like process are discussed.  相似文献   

16.
The reactions of 1,2‐bis(diphenylphosphanyl)ethane (dppe) with different silver(I) salts facilitated the formation of 1D and 2D coordination polymers, [Ag(dppe)(OAc)]n · nH2O ( 1 ) and [Ag2(dppe)1.5(NO3)2]n ( 2 ), respectively. The complexes were characterized by elemental analysis, ATR‐IR spectroscopy, 1H NMR, 13C NMR, and 31P NMR spectroscopy, and single‐crystal X‐ray diffraction. Structural analysis revealed that complex 1 exhibits a 1D infinite wavy structure, in which each silver(I) ion is bridged by dppe ligands. Structure 2 has a 2D topologically promising architecture that displays a 6.6.6 graphitic net, which corresponds to hnd topology. The nitrate ions and dppe ligands are in a μ2 bridging mode and support the formation of this net. Moreover, significant π–π interactions between the phenyl rings in the apertures of (6,3) grid stabilized complex 2 .  相似文献   

17.
The coordination polymers, {[Co(bbim)2(H2O)2](tcbdc) · 2H2O}n ( 1 ), {[Ni(tcbdc)(bbim)(H2O)2] · 2DMF}n ( 2 ), and {[Cu2(tcbdc)2(bbim)4] · 4H2O}n ( 3 ) [bbim = 1,1′‐(1,4‐butanediyl)bis(imidazole) and tcbdc2– = tetrachlorobenzene‐1,4‐dicarboxylate] were synthesized and characterized by IR spectroscopy, elemental analysis, thermogravimetric analysis, luminescence, and single‐crystal X‐ray diffraction analysis. Complex 1 has a double‐stranded chain structure through doubly bridged [Co(bbim)2] units. Complex 2 exhibits two‐dimensional square grid, whereas complex 3 has a three‐dimensional porous network structure with an unprecedented 44 · 611 topological structure through interpenetrating square grid. The water molecules in complex 3 occupy the vacancy through three kinds of hydrogen bond interactions. Upon excitation at 370 nm, complexes 1 – 3 present solid‐state luminescence at room temperature.  相似文献   

18.
Three 1H‐benzimidazole‐5‐carboxylate (Hbic)‐based coordination polymers, {[Ni(H2O)(Hbic)2] · 2H2O}n ( 1 ), {[Ni(H2O)2(Hbic)2] · 3H2O}n ( 2 ), and {[Co2(H2O)4(Hbic)4] · 4DMF · 3H2O}n ( 3 ) were obtained by reactions of the ligand H2bic and NiII or CoII salts in the presence of different structure directing molecules. They were structurally characterized by single‐crystal X‐ray diffraction, IR spectra, elemental analysis, thermal stability, luminescent, and magnetic measurements. Structural analysis suggests that the three polymers exhibit a 2D (4, 4) layer for 1 and 1D linear double chains for both 2 and 3 due to the variable binding modes and the specific spatial orientation of the Hbic ligand towards the different paramagnetic metal ions, which were further aggregated into different 3D supramolecular architectures by popular hydrogen‐bonding interactions. Weak and comparable antiferromagnetic couplings mediating by Hbic bridge are observed between the neighboring spin carriers for 2 and 3 , respectively. Additionally, complexes 1 – 3 also display different luminescence emissions at room temperature due to the ligand‐to‐metal charge transfer.  相似文献   

19.
Three new coordination polymers, [Zn(PBDC)(bbbm)0.5]n ( 1 ), [Co(PBDC)(bbbm)]n ( 2 ), and [Cd(PBDC)(bbbm)]n ( 3 ) were prepared via hydrothermal reactions of different metal(II) nitrates with flexible 1,3‐bis(4‐phenoxy)benzenedicarboxylic acid (H2L) and 1,1‐(1,4‐butanediyl)bis(benzimidazole) ligand. All these complexes were fully characterized by elemental analysis, FT‐IR, thermogravimetric analysis (TGA), powder X‐ray diffraction, and single‐crystal X‐ray diffraction. Structure analyses revealed that complex 1 has a 2D→2D twofold interpenetrating framework simplified by a 4‐connected sql net with point symbol (44.62), whereas complexes 2 and 3 are isostructural and exhibit a 2D→2D twofold interpenetrating framework rationalized as a three‐connected hcb net with point symbol (63). Complexes 1 – 3 further expand to 3D supramolecular structures through non‐covalent C–H ··· O interactions. Additionally, the luminescent and magnetic properties of some of these complexes were studied. Complex 3 presents ideal photoluminescent behavior, whereas complex 2 shows antiferromagnetic coupling between the central CoII ions, suggesting its latent application in magnetic material.  相似文献   

20.
Three metal coordination polymers {[Co(L)2(H2O)2]2+ · 2NO3}n ( 1 ), {[Mn(L)2(H2O)2]2+ · 2Cl · 3H2O}n ( 2 ), and [ZnL(ba)2]n ( 3 ) [L = 3,5‐bis(imidazole‐1‐yl)pyridine and Hba = benzoic acid] were synthesized and structurally characterized by IR spectroscopy, elemental analysis, X‐ray powder diffraction, and X‐ray single crystal diffraction. Complex 1 shows a one‐dimensional (1D) chain structure. Adjacent chains are connected by hydrogen bonding and nitrate groups to form a 3D network. Complex 2 features a 2D layer structure. A three‐dimensional network is constructed through the cluster consisting of two chloride ions and three water molecules. Complex 3 shows a 1D zigzag chain structure that further twists together to form a 3D network. The X‐ray powder diffraction patterns were compared with the simulated ones. Moreover, the luminescent properties of 1 – 3 were investigated in the solid state at room temperature, and the thermogravimetric analyses were carried out to study the thermal stability of the three complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号