首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two complexes [MnIII4(naphthsao)4(naphthsaoH)4] ( 1 ) and [FeIII6O2(naphthsao)4(O2CPh)6] ( 2 ) [naphthsao = 1‐(1‐hydroxy‐naphthalen‐2‐yl)ethanone oxime] were obtained through the reactions of naphthsao ligand and MnCl2 · 4H2O or FeCl3 · 6H2O in the presence of triethylamine (Et3N). Their structures were determined by X‐ray single crystal diffraction, elemental analysis, and IR spectra. Complex 1 displays 12‐MC‐4 metallacrown structural type with cube‐like configuration and 2 shows an offset stacked 10‐MC‐3 structural type with the ring connectivity containing Fe–O–C–O–Fe–O–N–Fe–O–N. Magnetic susceptibility measurement reveals the ferromagnetic interactions and field‐induced slow relaxation of the magnetization for 1 , whereas out‐of‐phase signal is not observed for 2 .  相似文献   

2.
Rh‐containing metallacycles, [(TPA)RhIII2‐(C,N)‐CH2CH2(NR)2‐]Cl; TPA=N,N,N,N‐tris(2‐pyridylmethyl)amine have been accessed through treatment of the RhI ethylene complex, [(TPA)Rh(η2CH2CH2)]Cl ([ 1 ]Cl) with substituted diazenes. We show this methodology to be tolerant of electron‐deficient azo compounds including azo diesters (RCO2N?NCO2R; R=Et [ 3 ]Cl, R=iPr [ 4 ]Cl, R=tBu [ 5 ]Cl, and R=Bn [ 6 ]Cl) and a cyclic azo diamide: 4‐phenyl‐1,2,4‐triazole‐3,5‐dione (PTAD), [ 7 ]Cl. The latter complex features two ortho‐fused ring systems and constitutes the first 3‐rhoda‐1,2‐diazabicyclo[3.3.0]octane. Preliminary evidence suggests that these complexes result from N–N coordination followed by insertion of ethylene into a [Rh]?N bond. In terms of reactivity, [ 3 ]Cl and [ 4 ]Cl successfully undergo ring‐opening using p‐toluenesulfonic acid, affording the Rh chlorides, [(TPA)RhIII(Cl)(κ1‐(C)‐CH2CH2(NCO2R)(NHCO2R)]OTs; [ 13 ]OTs and [ 14 ]OTs. Deprotection of [ 5 ]Cl using trifluoroacetic acid was also found to give an ethyl substituted, end‐on coordinated diazene [(TPA)RhIII2‐(C,N)‐CH2CH2(NH)2‐]+ [ 16 ]Cl, a hitherto unreported motif. Treatment of [ 16 ]Cl with acetyl chloride resulted in the bisacetylated adduct [(TPA)RhIII2‐(C,N)‐CH2CH2(NAc)2‐]+, [ 17 ]Cl. Treatment of [ 1 ]Cl with AcN?NAc did not give the Rh?N insertion product, but instead the N,O‐chelated complex [(TPA)RhI ( κ2‐(O,N)‐CH3(CO)(NH)(N?C(CH3)(OCH?CH2))]Cl [ 23 ]Cl, presumably through insertion of ethylene into a [Rh]?O bond.  相似文献   

3.
Electrospray ionization mass spectrometry (ESI/MS) has allowed the discovery of novel dimer ions emerging from solutions of metalloporphyrin salts and their investigation by collision‐induced dissociation (CID) with N2 molecules. ESI mass spectra have been recorded for the formation of the oxygen or chloride‐bridged dimer ions [(FeTPP)2OH]+, [(MnTPP)2OH]+, [(FeTPP)2Cl]+ and [(MnTPP)2Cl]+ derived from various solutions of FeTPPCl and MnTPPCl salts. The CID of [(FeTPP)2OH]+ proceeds mainly by neutral loss of (FeTPP)OH to form [FeTPP]+ and, to a minor extent, to form the charge‐reversed products. The CID of [(MnTPP)2OH]+ exhibits exclusively the product ion [MnTPP]+ by loss of neutral (MnTPP)OH. [(FeTPP)2Cl]+ and [(MnTPP)2Cl]+ dissociate by loss of (Fe/MnTPP)Cl to give rise to [Fe/MnTPP]+. [(FeTPP)2O]+ and [(FeTPP)2OH]+ were generated from a solution of the dimer, (FeTPP)2O. Dissociation of [(FeTPP)2O]+ yields two product ions, [FeTPP]+ and [(FeTPP)O]+, with higher onsets compared to the equivalent fragments formed from [(FeTPP)2OH]+. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Hydrocarbon‐bridged Metal Complexes. XLIX. Coordination Chemistry of Bis(ferrocenyl) substituted 1,3 Diketonates with Ruthenium, Rhodium, Iridium, and Palladium The reactions of the enolates of diferrocenoylmethane and of spacer bridged bis‐, tris‐ and tetrakis(ferrocenoyl)‐1,3‐diketones with chlorobridged compounds [(R3P)PdCl2]2, [(η3‐C3H5)PdCl]2, [(p‐cymene)RuCl2]2, [Cp*MCl2]2 (M = Rh, Ir) give a series of mono‐, bis‐, tris‐ and tetrakis(chelate) complexes 2 – 18 . The structures of (Ph3P)(Cl)Pd[OC(Fe)CHC(Fc)O] ( 3 ) and (Tol3P)(Cl) · Pd[OC(Fc)CHC(O)–C(O)CHC(Fc)O]Pd(Cl)(PTol3) ( 11 ) were determined by X‐ray diffraction. The methine H atom of diferrocenoylmethane and of 3 was substituted by bromine using N‐bromosuccinimide. The electrophilic glycine equivalent α‐bromo‐N‐boc‐glycine ester was added to the methine C‐atom (C3) of diferrocenoylmethane and the product was used as O,O′ chelate ligand.  相似文献   

5.
The ISEs based on [M(tpp)Cl] (M: Al, Ga, In, Mn, Fe; H2tpp: tetraphenylporphin) had pH responses across their respective pH ranges, which had some correlation with the pH ranges of the two‐phase hydrolysis. Such pH responses are ascribed to the phase boundary potentials relating to the acid‐base pairs of [M(tpp)(H2O)]+ and [M(tpp)(OH)] and/or [M2(tpp)2O]. The potential responses of the In and Fe complexes had the upper limitation to pH of 90 % hydrolysis, whereas those of the Al and Ga complexes had the extension to at least pH 12, indicating stable existence of [M(tpp)(H2O)]+ even in contact with strongly alkaline solutions.  相似文献   

6.
A new synthesis of (8‐quinolyl)‐5‐methoxysalicylaldimine (Hqsal‐5‐OMe) is reported and its crystal structure is presented. Two FeIII complexes, [Fe(qsal‐5‐OMe)2]Cl ? solvent (solvent=2 MeOH ? 0.5 H2O ( 1 ) and MeCN ? H2O ( 2 )) have been prepared and their structural, electronic and magnetic properties studied. [Fe(qsal‐5‐OMe)2] Cl ? 2 MeOH ? 0.5 H2O ( 1 ) exhibits rare crystallographically independent high‐spin and low‐spin FeIII centres at 150 K, whereas [Fe(qsal‐5‐OMe)2]Cl ? MeCN ? H2O ( 2 ) is low spin at 100 K. In both structures there are extensive π–π and C? H???π interactions. SQUID magnetometry of 2 reveals an unusual abrupt stepped‐spin crossover with T1/2=245 K and 275 K for steps 1 and 2, respectively, with a slight hysteresis of 5 K in the first step and a plateau of 15 K between the steps. In contrast, 1 is found to undergo an abrupt half‐spin crossover also with a hysteresis of 10 K. The two compounds are the first FeIII complexes of a substituted qsal ligand to exhibit abrupt spin crossover. These conclusions are supported by 57Fe Mössbauer spectroscopy. Both complexes exhibit reversible reduction to FeII at ?0.18 V and irreversible oxidation of the coordinated qsal‐5‐OMe ligand at +1.10 V.  相似文献   

7.
A study of the coordination chemistry of different amidato ligands [(R)N?C(Ph)O] (R=Ph, 2,6‐diisopropylphenyl (Dipp)) at Group 4 metallocenes is presented. The heterometallacyclic complexes [Cp2M(Cl){κ2N,O‐(R)N?C(Ph)O}] M=Zr, R=Dipp ( 1 a ), Ph ( 1 b ); M=Hf, R=Ph ( 2 )) were synthesized by reaction of [Cp2MCl2] with the corresponding deprotonated amides. Complex 1 a was also prepared by direct deprotonation of the amide with Schwartz reagent [Cp2Zr(H)Cl]. Salt metathesis reaction of [Cp2Zr(H)Cl] with deprotonated amide [(Dipp)N?C(Ph)O] gave the zirconocene hydrido complex [Cp2M(H){κ2N,O‐(Dipp)N?C(Ph)O}] ( 3 ). Reaction of 1 a with Mg did not result in the desired Zr(III) complex but in formation of Mg complex [(py)3Mg(Cl) {κ2N,O‐(Dipp)N?C(Ph)O}] ( 4 ; py=pyridine). The paramagnetic complexes [Cp′2Ti{κ2N,O‐(R)N?C(Ph)O}] (Cp′=Cp, R=Ph ( 7 a ); Cp′=Cp, R=Dipp ( 7 b ); Cp′=Cp*, R=Ph ( 8 )) were prepared by the reaction of the known titanocene alkyne complexes [Cp2′Ti(η2‐Me3SiC2SiMe3)] (Cp′=Cp ( 5 ), Cp′=Cp* ( 6 )) with the corresponding amides. Complexes 1 a , 2 , 3 , 4 , 7 a , 7 b , and 8 were characterized by X‐ray crystallography. The structure and bonding of complexes 7 a and 8 were also characterized by EPR spectroscopy.  相似文献   

8.
The first doubly‐bridged thiocarbamoyl metal complex [Mo(Cl)(CO)2(PPh3)]212:μ‐SCNMe2)2 ( 2 ) was formed from stirring [Mo(CO)22‐SCNMe2)(PPh3)2Cl] ( 1 ) in dichloromethane at room temperature. Complex 2 is a dimer with each thiocarbamoyl unit coordinating through sulfur and carbon to one metal center and bridging both metals through sulfur. Complex 2 is characterized by X‐ray diffraction analysis.  相似文献   

9.
Liquid phase catalytic oxidation of a number of alkenes, for example, cyclohexene, cis‐cyclooctene, styrene, 1‐methyl cyclohexene and 1‐hexene, was performed using polymer‐anchored copper (II) complexes PS‐[Cu (sal‐sch)Cl] ( 5 ), PS‐[Cu (sal‐tch)Cl] ( 6 ), PS‐[CH2{Cu (sal‐sch)Cl}2] ( 7 ) and PS‐[CH2{Cu (sal‐tch)Cl}2] ( 8 ). Neat complexes [Cu (sal‐sch)Cl] ( 1 ), [Cu (sal‐tch)Cl] ( 2 ), [CH2{Cu (sal‐sch)Cl}2] ( 3 ) and [CH2{Cu (sal‐tch)Cl}2] ( 4 ) were isolated by reacting CuCl2·2H2O with [Hsal‐sch] ( I ), [Hsal‐tch] ( II ), [H2bissal‐sch] ( III ) and [H2bissal‐tch] ( IV ), respectively, in refluxing methanol. Complexes 1–4 have been covalently anchored in Merrifield resin through the amine nitrogen of the semicarbazide or thiosemicarbazide moiety. A number of analytical, spectroscopic and thermal techniques, such as CHNS analysis, Fourier transform‐infrared, UV–Vis, PMR, 13C‐NMR, electron paramagnetic resonance, scanning electron microscopy, energy‐dispersive X‐ray analysis, thermogravimetric analysis, atomic force microscopy, atomic absorption spectroscopy, and electrospray ionization‐mass spectrometry, were used to analyze and establish the molecular structure of the ligands ( I )–( IV ) and complexes ( 1 )–( 8 ) in solid state as well as in solution state. Grafted complexes 5 – 8 were employed as active catalysts for the oxidation of a series of alkenes in the presence of hydrogen peroxide. Copper hydroperoxo species ([CuIII (sal‐sch)‐O‐O‐H]), which is believed to be the active intermediate, generated during the catalytic oxidation of alkenes, are identified. It was found that supported catalysts are very economical, green and efficient in contrast to their neat complexes as well as most of the recently reported heterogeneous catalysts.  相似文献   

10.
Synthesis and Properties of [Ph2(Carb)P]AlCl4 (Carb = 2,3‐Dihydro‐1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene) – a Stable Carbene Complex of Trivalent Phosphorus [1] 2,3‐Dihydro‐1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene ( 7 , Carb) reacts with chlorodiphenylphosphane to give the cationic phosphane [Ph2(Carb)P]Cl ( 10 ) which is transferred to the more stable salt [Ph2(Carb)]AlCl4 ( 13 ) on treatment with AlCl3. The cationic phosphane selenide [Ph2(Carb)PSe]AlCl4 ( 14 ) is obtained from 13 and selenium. Spectroscopic and structural data indicate [Ph2(Carb)P]+ to be a cationic analogue of Ph3P. The X‐ray structure of 13 is reported.  相似文献   

11.
High yielding syntheses of 1‐(ferrocenylmethyl)‐3‐mesitylimidazolium iodide ( 1 ) and 1‐(ferrocenylmethyl)‐3‐mesitylimidazol‐2‐ylidene ( 2 ) were developed. Complexation of 2 to [{Ir(cod)Cl}2] (cod=cis,cis‐1,5‐cyclooctadiene) or [Ru(PCy3)Cl2(?CH‐o‐O‐iPrC6H4)] (Cy=cyclohexyl) afforded 3 ([Ir( 2 )(cod)Cl]) and 5 ([Ru( 2 )Cl2(?CH‐o‐O‐iPrC6H4)]), respectively. Complex 4 ([Ir( 2 )(CO)2Cl]) was obtained by bubbling carbon monoxide through a solution of 3 in CH2Cl2. Spectroelectrochemical IR analysis of 4 revealed that the oxidation of the ferrocene moiety in 2 significantly reduced the electron‐donating ability of the N‐heterocyclic carbene ligand (ΔTEP=9 cm?1; TEP=Tolman electronic parameter). The oxidation of 5 with [Fe(η5‐C5H4COMe)Cp][BF4] as well as the subsequent reduction of the corresponding product [ 5 ][BF4] with decamethylferrocene (Fc*) each proceeded in greater than 95 % yield. Mössbauer, UV/Vis and EPR spectroscopy analysis confirmed that [ 5 ][BF4] contained a ferrocenium species, indicating that the iron center was selectively oxidized over the ruthenium center. Complexes 5 and [ 5 ][BF4] were found to catalyze the ring‐closing metathesis (RCM) of diethyl diallylmalonate with observed pseudo‐first‐order rate constants (kobs) of 3.1×10?4 and 1.2×10?5 s?1, respectively. By adding suitable oxidants or reductants over the course of a RCM reaction, complex 5 was switched between different states of catalytic activity. A second‐generation N‐heterocyclic carbene that featured a 1′,2′,3′,4′,5′‐ pentamethylferrocenyl moiety ( 10 ) was also prepared and metal complexes containing this ligand were found to undergo iron‐centered oxidations at lower potentials than analogous complexes supported by 2 (0.30–0.36 V vs. 0.56–0.62 V, respectively). Redox switching experiments using [Ru( 10 )Cl2(?CH‐o‐O‐iPrC6H4)] revealed that greater than 94 % of the initial catalytic activity was restored after an oxidation–reduction cycle.  相似文献   

12.
The X‐ray crystallographic analysis of the title complex, chloro­[3,10,13,20‐tetraethyl‐4,9,14,19‐tetra­methyl­penta­cyclo[16.2.1.12,5.18,11.112,15]­tetracosa‐2,4,6,8(23),9,12,14,16,18(21),19‐decaene]­iron(III) chloro­form solvate, [Fe(C33H37N4)Cl]·CHCl3, reveals a twisted macrocyclic framework with a slightly distorted rectangular pyramidal core, where the deviation of the central FeIII atom from the least‐squares plane of the C20N4 core is 0.594 (1) Å. Some important bond distances are as follows: Fe—N 2.019 (3), 2.026 (3), 2.028 (3) and 2.034 (3) Å; Fe—Cl 2.232 (1) Å.  相似文献   

13.
4‐Phenyl‐4‐thiazoline‐2‐thiol is an active pharmaceutical compound, one of whose activities is as a human indolenamine dioxygenase inhibitor. It has been shown recently that in both the solid state and the gas phase, the thiazolinethione tautomer should be preferred. As part of both research on this lead compound and a medicinal chemistry program, a series of substituted arylthiazolinethiones have been synthesized. The molecular conformations and tautomerism of 4‐(2‐methoxyphenyl)‐4‐thiazoline‐2‐thione and 4‐(4‐methoxyphenyl)‐4‐thiazoline‐2‐thione, both C10H9NOS2, are reported and compared with the geometry deduced from ab initio calculations [PBE/6‐311G(d,p)]. Both the crystal structure analyses and the calculations establish the thione tautomer for the two substituted arylthiazolinethiones. In the crystal structure of the 2‐methoxyphenyl regioisomer, the thiazolinethione unit was disordered over two conformations. Both isomers exhibit similar hydrogen‐bond patterns [R22(8) motif] and form dimers. The crystal packing is further reinforced by short S…S interactions in the 2‐methoxyphenyl isomer. The conformations of the two regioisomers correspond to stable geometries calculated from an ab initio energy‐relaxed scan.  相似文献   

14.
Oxidovanadium(IV) complexes [VO(L1)(phen)] ? Cl ( 1 ) and [VO(L2)(L3)] ? Cl ( 2 ), in which HL1 is 2‐{[(benzimidazol‐2‐yl)methylimino]‐methyl}phenol (sal‐ambmz), HL2 is 2‐[({1‐[(anthracen‐9‐yl)methyl]‐benzimidazol‐2‐yl}methylimino)‐methyl]phenol (sal‐an‐ambmz), phen is 1,10‐phenanthroline and L3 is dipyrido[3,2‐a:2′,3′‐c]phenazine (dppz) conjugated to a Gly‐Gly‐OMe dipeptide moiety, were prepared, characterized, and their DNA binding, photoinduced DNA‐cleavage, and photocytotoxic properties were studied. Fluorescence microscopy studies were performed by using complex 2 in HeLa and HaCaT cells. Complex 1 , structurally characterized by X‐ray crystallography, has a vanadyl group in VO2N4 core with the VO2+ moiety bonded to N,N‐donor phen and a N,N,Odonor Schiff base. Complex 2 , having an anthracenyl fluorophore, showed fluorescence emission bands at 397, 419, and 443 nm. The complexes are redox‐active exhibiting the V(IV)/V(III) redox couple near ?0.85 V versus SCE in DMF 0.1 M tetrabutylammonium perchlorate (TBAP). Complex 2 , having a dipeptide moiety, showed specific binding towards poly(dAdT)2 sequence. The dppz‐Gly‐Gly‐OMe complex showed significant DNA photocleavage activity in red light of 705 nm through a hydroxyl radical (.OH) pathway. Complex 2 showed photocytotoxicity in HaCaT and HeLa cells in visible light (400–700 nm) and red light (620–700 nm), however, the complex was less toxic in the dark. Fluorescence microscopy revealed the localization of complex 2 primarily in mitochondria. Apoptosis was found to occur inside mitochondria (intrinsic pathway) caused by ROS generation.  相似文献   

15.
As representative porphyrin model compounds, the structures of `picket‐fence' porphyrins have been studied intensively. The title solvated complex salt {systematic name: (4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]hexacosane)potassium(I) [5,10,15,20‐tetrakis(2‐tert‐butanamidophenyl)porphyrinato]iron(II) n‐hexane monosolvate}, [K(C18H36N2O6)][Fe(C64H64N8O4)Cl]·C6H14 or [K(222)][Fe(TpivPP)Cl]·C6H14 [222 is cryptand‐222 or 4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]hexacosane, and TpivPP is meso‐α,α,α,α‐tetrakis(o‐pivalamidophenyl)porphyrinate(2−)], [K(222)][Fe(TpivPP)Cl]·C6H14, is a five‐coordinate high‐spin iron(II) picket‐fence porphyrin complex. It crystallizes with a potassium cation chelated inside a cryptand‐222 molecule; the average K—O and K—N distances are 2.81 (2) and 3.05 (2) Å, respectively. One of the protecting tert‐butyl pickets is disordered. The porphyrin plane presents a moderately ruffled distortion, as suggested by the atomic displacements. The axial chloride ligand is located inside the molecular cavity on the hindered porphyrin side and the Fe—Cl bond is tilted slightly off the normal to the porphyrin plane by 4.1°. The out‐of‐plane displacement of the metal centre relative to the 24‐atom mean plane (Δ24) is 0.62 Å, indicating a noticeable doming of the porphyrin core.  相似文献   

16.
In the title compound, (C6H8N4)[AuCl4]Cl, the 4,4′‐bi(1H‐pyrazol‐2‐ium) dication, denoted [H2bpz]2+, is situated across a centre of inversion, the [AuCl4] anion lies across a twofold axis passing through Cl—Au—Cl, and the Cl anion resides on a twofold axis. Conventional N—H...Cl hydrogen bonding [N...Cl = 3.109 (3) and 3.127 (3) Å, and N—H...Cl = 151 and 155°] between [H2bpz]2+ cations (square‐planar node) and chloride anions (tetrahedral node), as complementary donors and acceptors of four hydrogen bonds, leads to a three‐dimensional binodal four‐connected framework with cooperite topology (three‐letter notation pts). The framework contains channels along the c axis housing one‐dimensional stacks of square‐planar [AuCl4] anions [Au—Cl = 2.2895 (10)–2.2903 (16) Å; interanion Au...Cl contact = 3.489 (2) Å], which are excluded from primary hydrogen bonding with the [H2bpz]2+ tectons.  相似文献   

17.
Unusual Formation and Structure of a O‐Sulfinato Zinc Complex Whereas the reaction between hydrotris[(N‐xylyl)‐thioimidazolyl]borato‐zinc perchlorate ([ L· Zn‐OClO3]) and ethanethiolate under an inert atmosphere leads to the thiolate complex [ L· Zn‐SC2H5], the same reaction in air produces the sulfinato complex [ L· Zn‐O‐S(O)‐C2H5] ( 1 ). 1 is the first fully characterized sulfinato‐zinc complex. Its structure determination has confirmed the unusual coordination of the sulfinato ligand via one of its oxygen atoms.  相似文献   

18.
The title one‐dimensional chain polymer complex, [Mn(C6H4NO3)Cl(C6H5N)2]n, was isolated from the reaction of MnCl2 with 6‐oxo‐1,6‐dihydro­pyridine‐2‐carboxylic acid (HpicOH) in pyridine. The asymmetric unit contains one [Mn(HPicO)Cl(py)2] moiety (py is pyridine), with the (HpicO) ligand acting in a tridentate manner via the two carboxyl­ate O atoms and the pyridone O atom. The operation of inversion centres generates eight‐ and 14‐membered rings and, in conjunction with an a‐axis translation, leads to an infinite chain extending along [100]. The Mn⋯Mn separations in this chain are 5.1069 (6) and 7.1869 (6) Å. The MnII atom has a distorted octahedral coordination, with trans‐axial pyridine ligands and with three O atoms and the Cl atom in the equatorial plane. The conformation of the 14‐membered ring is stabilized by pairs of inversion‐related N—H⋯O hydrogen bonds.  相似文献   

19.
The reaction of the rifle cyclic complex (1) with sodium amalgam in THF resulted in the expected cleavage of the Fe-Fe bond to afford his-sodium salt ( Me2SiSiMe2 ) [η^5-C5H4Fe(CO)2]2 (4). The latter was not isolated and was used directly to react with MeI, PhCH2Cl, CH3C(O)Cl, PhC(O)Cl,Cy3SnCl (Cy= cyclohexyl) or Ph3SnCl to afford corresponding ring-opened derivatives (Me2SiSiMe2) [η^5-C5H4Fe(CO)2]2 [5, R=Me; 6, R=PhCH2; 7, R=CH3C(O); 8, R=PhC(O); 9, R = Cy3Sn or 10, R = Ph3Sn ]. The crystal and molecular structures of 10 were determined by X-ray diffraction analysis. The molecule took the desired ant/ conformation around the Si-Si bond. The length of the Si--Si bond is 0.2343(3)nm, which is essentially identical to that in the cyclic structure of 1[0.2346(4) tun]. This result unambiguously demonstrates that the Si--Si bond in the cyclic structure of 1 is not subject to obvious strain.  相似文献   

20.
Reactivity studies of the thermally stable ruthenostannylene complex [Cp*(IXy)(H)2Ru Sn Trip] ( 1 ; IXy=1,3‐bis(2,6‐dimethylphenyl)imidazol‐2‐ylidene; Cp*=η5‐C5Me5; Trip=2,4,6‐iPr3C6H2) with a variety of organic substrates are described. Complex 1 reacts with benzoin and an α,β‐unsaturated ketone to undergo [1+4] cycloaddition reactions and afford [Cp*(IXy)(H)2RuSn(κ2‐O,O‐OCPhCPhO)Trip] ( 2 ) and [Cp*(IXy)(H)2RuSn(κ2‐O,C‐OCPhCHCHPh)Trip] ( 3 ), respectively. The reaction of 1 with ethyl diazoacetate resulted in a tin‐substituted ketene complex [Cp*(IXy)(H)2RuSn(OC2H5)(CHCO)Trip] ( 4 ), which is most likely a decomposition product from the putative ruthenium‐substituted stannene complex. The isolation of a ruthenium‐substituted stannene [Cp*(IXy)(H)2RuSn(Flu)Trip] ( 5 ) and stanna‐imine [Cp*(IXy)(H)2RuSn(κ2‐N,O‐NSO2C6H4Me)Trip] ( 6 ) complexes was achieved by treatment of 1 with 9‐diazofluorene and tosyl azide, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号