首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A three‐dimensional cyano‐bridged copper(II) complex, [Cu(dien)Ag(CN)2]2[Ag2(CN)3][Ag(CN)2] ( 1 ) (dien = diethylenetriamine), has been prepared and characterized by X‐ray crystallography. Complex 1 crystallized in the monoclinic space group P21/n with a = 6.988(2), b = 17.615(6), c = 12.564(4) Å, β = 90.790(5)°. The crystal consists of cis‐[Cu(dien)]2+ units bridged by [Ag(CN)2] to form a zig‐zag chain. The Ag atoms of the free and bridging [Ag(CN)2] link together to form additional infinite zig‐zag chains with short Ag···Ag distances. The presence of Ag···Ag interactions effectively increases the dimensionality from a 1‐D chain to a 3‐D coordination polymer.  相似文献   

2.
The reaction of 4,4′‐bis(1,2,4‐triazol‐1‐ylmethyl)biphenyl (btmb) with silver(I) salts of BF4, NO3 and N3 led to the formation of four new silver(I) coordination polymers {[Ag(btmb)]BF4}n ( 1 ), {[Ag2(btmb)3](NO3)2(H2O)5}n ( 2 ), [Ag2(btmb)(N3)2]n ( 3 ), and [Ag(btmb)(N3)]n ( 4 ). Their coordination number varies from 2 (in 1 ) to 3 (in 2 ), 4 (in 3 ), and 5 (in 4 ). Different from the single chain structure of 1 , complex 2 displays a 1D ladder‐like double chain framework, whereas complex 3 exhibits a 2D layered architecture. Complex 4 has the same anion as complex 3 but shows a different metal‐to‐ligand ratio and a 1D double‐zigzag chain structure. Both 3 and 4 have Ag ··· Ag argentophilic interactions. The ligand btmb adopts both cis or trans configuration in the studied complexes. A trans‐ or cis‐btmb ligand link silver ions with Ag ··· Ag distances of ≈?18 and 13 Å, respectively. BF4 and NO3 are non‐coordinating anions in 1 and 2 . N3 is the bridging anion in 3 (1,3‐bridging fashion) and 4 (1,1‐bridging fashion). These findings suggest that the coordination numbers around the AgI ion correlate to the coordination abilities of anions and the btmb to silver ratio. In addition, the influence of anions on thermal stability were also investigated. This work is a good example that nicely supports the less explored field of anion‐dependent structures of complexes with non‐pyridyl ligands.  相似文献   

3.
Sulfathiazole reacts with [Ph3PAu(CH3COO)] in benzene and with Ag(CH3COO) in methanol giving [(sulfathiazolato)AuPPh3] ( 1 ) and {[Ag(sulfathiazolato)]2}n ( 2 ). While the lattice of 1 contains single molecules with linear N–Au–P bonds, compound 2 performs a polymeric, one‐dimensional assembling of [Ag(sulfathiazolato)]2 dimers linked through intermolecular Ag···O=S=O interactions along the crystallographic axis b. The silver atoms achieve a tetrahedral configuration through Ag–Ag contacts which measure 2.8427(4) Å, considerably shorter than the normal bonding distance of metallic silver.  相似文献   

4.
Five mono‐nuclear silver(I) complexes with the ligand 2,9‐dimethyl‐1,10‐phenanthroline, namely [Ag(DPEphos)(dmp)]BF4 ( 1 ), [Ag(DPEphos)(dmp)]CF3SO3 ( 2 ), [Ag(DPEphos)(dmp)]ClO4 ( 3 ), [Ag(DPEphos)(dmp)]NO3 ( 4 ), and [Ag(dppb)(dmp)]NO3 · CH3OH ( 5 ) {DPEphos = bis[2‐(diphenylphosphanyl)phenyl]ether, dppb = 1,2‐bis(diphenylphosphanyl)benzene, dmp = 2,9‐dimethyl‐1,10‐phenanthroline} were characterized by X‐ray diffraction, IR, 1H NMR, 31P NMR and fluorescence spectroscopy. Their terahertz (THz) time‐domain spectra were also studied. In these complexes the silver(I), which is coordinated by two kinds of chelating ligands, adopts four‐coordinate modes to generate mono‐nuclear structures. In complexes 1 , 3 – 5 , offset π ··· π weak interactions exist between the neighboring benzene rings. In the 31P NMR spectra, there exist splitting signals (dd), which can be attributed to the coupling of the 107,109Ag–31P. All the emission peaks of these complexes are attributed to ligand‐centered excited states.  相似文献   

5.
Crystallization of copper(I) cyanide from piperidine (‘pip’) solution yields an adduct of CuCN : pip (3 : 4) ratio, as established by a single crystal X‐ray structure determination, which also shows the complex to have a single‐stranded ···Cu(CN)Cu(CN)···spine (C,N scrambled), one‐third of the copper atoms carrying a pair of pip ligands, the others only one. Crystallization of silver(I) cyanide from piperidine (‘pip’) or cyclohexylamine (‘CyNH2’) solutions yields adducts of the unusual AgX : unidentate‐N‐base (1 : 2) stoichiometry. The CyNH2 adduct is, unusually for cyanide complexes of this type, mononuclear with a trigonal planar silver atom, [(NC)Ag(H2NCy)2], the AgCN component lying along the intersection of two crystallographic mirror planes which bisect and relate the H2NCy ligands (Ag‐C, N 2.067(3), 2.335(2) Å; N‐Ag‐N, C 80·80(6), 139.60(4)°). In the pip adduct, the immediate silver atom environment is also three‐coordinate (Ag‐C; N, N 2.080(1); 2.288, 2.443(1) Å; N‐Ag‐N 88·34(4), N‐Ag‐C 144.47(4), 125.07(4), (Σ357.9°) perturbed toward two‐coordination, but the silver atom environment geometry is further perturbed from planarity by the parallel approach of an inversion‐related molecule (Ag···C′ 2.926(1) Å (Ag···Ag′ 3.1842(2)°) forming a loose, albeit still discrete, dimer. Key features in the IR spectra of the above compounds and of AgCN : pip (1 : 1) and CuCN : CyNH2 (2 : 3) are assigned and discussed in terms of the structures or of proposed structures in the case of the latter two adducts. The structure of [ClAg(pip)3], adventitiously obtained, is also described (Ag‐Cl 2.471(3); Ag‐N 2.147(13), 2.188(7) (x2) Å; Cl‐Ag‐N 96.1(3), 98.5(2), N‐Ag‐N 116.3(2) (x2), 122.1(3)°).  相似文献   

6.
Five mono‐nuclear silver (I) complexes with 6,7‐dicyanodipyridoquinoxaline ligand, namely {[Ag(DPEphos)(dicnq)]NO3}2 · CH3OH ( 1 ), [Ag(DPEphos)(dicnq)]BF4 · CH3OH ( 2 ), [Ag(XANTphos)(dicnq)]CF3SO3 ( 3 ), {[Ag(XANTphos)(dicnq)]NO3}2 ( 4 ), and [Ag(XANTphos)(dicnq)]ClO4 · CH2Cl2 ( 5 ) {DPEphos = bis[2‐(diphenylphosphanyl)phenyl]ether, dicnq = 6,7‐dicyanodipyridoquinoxaline, XANTphos = 9,9‐dimethyl‐4,5‐bis(diphenylphosphanyl)xanthene} were characterized by X‐ray diffraction, IR, 1H NMR, 31P NMR, fluorescence spectra, and terahertz time‐domain spectra (THz‐TDS). In the five complexes the AgI, which is coordinated by two kinds of chelating ligands, adopts four‐coordinate modes to generate mono‐nuclear structures. The C–H ··· π interactions lead to formation of a 1D infinite chain for complexes 2 and 3 . The crystal packing of complexes 1 and 5 reveal that they form 3D supermolecular network by several pairs of C–H ··· π interactions. The emissions of these complexes are attributed to ligands‐centered [π–π*] transition based on both of the P‐donor and N‐donor ligands.  相似文献   

7.
Three polymeric silver(I) complexes with terephthalate anions as counterions or ligands, [Ag(pren)]2(tp)·2H2O ( 1 ), [Ag(en)][Ag(μ2‐tp)]·H2O ( 2 ), and [Ag2(μ4‐tp)(apy)2] ( 3 ) (where pren = 1, 2‐propylenediamine, tp =terephthalate dianion, en = ethylenediamine, and apy = 2‐aminopyridine) were synthesized and characterized by X‐ray single crystal analysis and infrared spectroscopy. 1 crystallizes in the monoclinic space group P211/c with a = 11.3221(5), b = 7.1522(3), c = 14.8128(5)Å, V = 1015.77(7)Å3, β = 122.132(2), and Z = 2. 2 crystallizes in the orthorhombic space group Pnma with a = 9.6144(6), b = 11.3465(7), c = 11.4810(7)Å, V = 1252.5(1)Å3, and Z = 4. 3 crystallizes in the monoclinic space group P21/n with a = 8.2003(5), b = 5.8869(4), c = 18.3769(11)Å, β = 92.593(1), V = 886.2(1)Å3, and Z = 4. Terephthalate dianions are not coordinated to the metal atoms in 1 , but act as a μ2‐bridging ligand in 2 and as a μ4‐bridging ligand in 3 .  相似文献   

8.
Poly[[μ4‐4,4′‐bipyridazine‐μ5‐sulfato‐disilver(I)] monohydrate], {[Ag2(SO4)(C8H6N4)]·H2O}n, (I), and poly[[aqua‐μ4‐pyridazino[4,5‐d]pyridazine‐μ3‐sulfato‐disilver(I)] monohydrate], {[Ag2(SO4)(C6H4N4)(H2O)]·H2O}n, (II), possess three‐ and two‐dimensional polymeric structures, respectively, supported by N‐tetradentate coordination of the organic ligands [Ag—N = 2.208 (3)–2.384 (3) Å] and O‐pentadentate coordination of the sulfate anions [Ag—O = 2.284 (3)–2.700 (2) Å]. Compound (I) is the first structurally examined complex of the new ligand 4,4′‐bipyridazine; it is based upon unprecedented centrosymmetric silver–pyridazine tetramers with tetrahedral AgN2O2 and trigonal–bipyramidal AgN2O3 coordination of two independent AgI ions. Compound (II) adopts a typical dimeric silver–pyridazine motif incorporating two kinds of square‐pyramidal AgN2O3 AgI ions. The structure exhibits short anion–π interactions involving noncoordinated sulfate O atoms [O...π = 3.041 (3) Å].  相似文献   

9.
The complexes of 2,11‐dithia‐4,5,6,7,8,9‐hexahydro[3.3]paracyclophane (dthhpcp) with Cu(I), i.e. [Cu2I2(dthhpcp)2]·2H2O 1 , or with Ag(I), i.e. [Ag(dthhpcp)(NO3)]thf 2 and [Ag(dthpcp)(CF3COO)] 3 , were prepared for structural study by single‐crystal X‐ray diffraction analysis. For these three complexes, dthhpcp serves as a bridging group in the polymeric structure through bridging sulfur atoms via metal, while the bonding of anion with the second metal atom forms the multi‐diminished structures. Complex 1 is a novel two‐dimensional coordination polymer composed of Cu6 motifs, in which Cu2I2 formed a square planar unit to link the dthhpcp molecule. The two oxygen atoms of the nitrate anion as a bridge for two Ag atoms in complex 2 provides a three‐dimensional channel framework of silver(I) with a tetrahydrofuran molecule as a guest inside the open cavities. In contrast, the analogous reaction with silver triflouroacetate gave a complex 3 , which is composed of infinite linear chains of‐Ag‐dthhpcp‐Ag‐dthhpcp‐ along the a axis. Unit cell data: complex 1 , orthorhombic system, space group P2(1)2(1)2(1), a = 19.2982(11) Å b = 16.5661(10) Å, c = 25.3006(15) Å, β = 90°, Z = 8; complex 2 , orthorhombic system, space group Pna2(1), a = 8.8595(6) Å, b = 12.6901(9) Å, c = 19.8449(14) Å, β = 90°, Z = 4; complex 3 , monoclinic system, space group P2(1)/n, a = 8.845(3) Å, b = 20.841(6) Å, c = 11.061(3) Å, β = 107.832(6)°, Z = 4.  相似文献   

10.
Two novel two‐dimensional silver(I) polymers, [Ag(5‐bsa)]n ( 1 ) and [Ag(2‐aba)]n ( 2) (5‐bsaH = 5‐bromosalicylic acid and 2‐abaH = 2‐aminobenzoic acid), have been synthesized from the reaction of Ag2O and carboxylate ligands in ammonia solution and structurally determined by single‐crystal X‐ray diffraction analyses. 1 crystallizes in the monoclinic space group P21/c with a = 7.316(2), b = 8.171(2), c = 13.051(3) Å, U = 777.0(3) Å3, β = 95.14(3) and Z = 4. 2 crystallizes in the orthorhombic space group Pna21 with a = 5.9486(8), b = 24.227(3), c = 4.9042(6) Å, U = 706.8(2) Å3, and Z = 4. In 1 , 5‐bsa serves as tridentate ligands coordinating to three Ag+ ions through its hydroxyl and bridging ligand carboxyl groups, with the Ag‐Ag bonding and two carboxylate ions defined in a slight distorted plane and further extending into a two‐dimension layer through the hydroxyl and the overlapping and off‐set stacking interactions. In 2 , adjacent Ag+ ions via Ag‐Ag bonding interactions generate a one‐dimension silver chain and adjacent silver chains are further linked by μ2‐N, O atoms of 2‐aba to result in a two‐dimensional configuration, with the inter‐chain hydrogen bonding interaction forming a three‐dimension supramolecular structure. Both the two silver(I) complexes have strong inhibitory activities against Jack Bean urease with the IC50 values of 21.98 μM for 1 and 25.34 μM for 2 , but neglectable inhibition activity on Xanthine Oxidase.  相似文献   

11.
The reaction of Ag2SO4 and bpp (bpp = 1,3‐bis(4‐pyridyl)propane) in H2O afforded the complex [Ag2(bpp)2(SO4) · 6.5H2O·CH3OH]n, 1. The IR and TGA have been recorded and the structure has been determined. Crystal data for 1: Space group C2/c, a = 17.885(4), b = 25.230(6), c = 8.832(2) Å, β = 105.437(4)°. V = 3841(1) Å3, Z = 8 with final residuals R1 = 0.0710 and wR2 = 0.1620. The complex shows a three‐dimensional supramoleclar structure constructed with two‐dimensional infinite [Ag2(bpp)2]n sheetlike layers pillared by Ag‐Ag interactions and Ag····O (SO4) interactions in the solid state.  相似文献   

12.
Four new bridged silver(I) complexes, namely [Ag22‐teda)(μ2‐fbc)2] ( 1 ), [Ag22‐1,6‐dah)2](bpdc) · 4H2O ( 2 ), [Ag22‐2‐ap)(2‐ap)(bnb)] · 0.34H2O ( 3 ), [Ag22‐pyc)2(2‐apy)2] · 0.5H2O ( 4 ), have been synthesized and characterized by elemental analysis and crystallographic methods [fbc = 4‐fluorobenzoate, teda = triethylenediamine ( 1 ); bpdc = biphenyl‐4,4′‐dicarboxylate, 1,6‐dah = 1,6‐diaminohexane ( 2 ); bnb = 3,5‐binitrobenzoate, 2‐ap = 2‐aminopyrimidine ( 3 ); pyc = 3‐pyridinecarboxylate acid, 2‐apy = 2‐aminopyridine ( 4 )]. Complex 1 contains a 1D linear chain paralleling to the c‐axis, whereas in complex 2 silver(I) atoms were bridged by the 1,6‐dah ligand into a zigzag chain, further giving a 1D ribbon by weak Ag ··· Ag interactions. Complex 3 consists of a dinuclear silver(I) [Ag22‐2‐ap)(2‐ap)(bnb)] moiety and a lattice water molecule, forming a 3D network via a number of hydrogen‐bonding interactions such as N–H ··· O, N–H ··· N and C–H ··· O hydrogen bond and other weak interactions such Ag ··· Ag, Ag ··· N, N ··· O as well as O ··· O interaction. Similar to 3 , the asymmetric unit of 4 consists of one dinuclear silver(I) [Ag22‐pyc)2(2‐apy)2] moiety and half lattice water molecule, further generating a tetranuclear silver(I) {[Ag22‐pyc)2(2‐apy)2]2 · H2O} moiety. These moieties construct a 3D supramolecular network structure of 4 through N–H ··· O, O–H ··· O and C–H ··· O hydrogen bonds as well as other weak interactions such as Ag ··· O and N ··· O interactions.  相似文献   

13.
In catena‐poly­[[(di‐2‐pyridyl­amine‐κ2N,N′)silver(I)]‐μ‐nico­tinato‐κ2N:O], [Ag(C6H4NO2)(C10H9N3)]n, the AgI atom is tetracoordinated by two N atoms from the di‐2‐pyridyl­amine (BPA) ligand [Ag—N = 2.3785 (18) and 2.3298 (18) Å] and by one N atom and one carboxyl­ate O atom from nicotinate ligands [Ag—N = 2.2827 (15) Å and Ag—O = 2.3636 (14) Å]. Bridging by nicotinate N and O atoms generates a polymeric chain structure, which extends along [100]. The carboxyl O atom not bonded to the Ag atom takes part in an intrachain C—H⋯O hydrogen bond, further stabilizing the chain. Pairs of chains are linked by N—H⋯O hydrogen bonds to generate ribbons. There are no π–π interactions in this complex. In catena‐poly­[[(di‐2‐pyridyl­amine‐κ2N,N′)silver(I)]‐μ‐2,6‐di­hydroxy­benzoato‐κ2O1:O2], [Ag(C7H5O4)(C10H9N3)]n, the AgI atom has a distorted tetrahedral coordination, with three strong bonds to two pyridine N atoms from the BPA ligand [Ag—N = 2.286 (5) and 2.320 (5) Å] and to one carboxyl­ate O atom from the 2,6‐di­hydroxy­benzoate ligand [Ag—O = 2.222 (4) Å]; the fourth, weaker, Ag‐atom coordination is to one of the phenol O atoms [Ag⋯O = 2.703 (4) Å] of an adjacent moiety, and this interaction generates a polymeric chain along [100]. Pairs of chains are linked about inversion centers by N—H⋯O hydrogen bonds to form ribbons, within which there are π–π interactions. The ribbons are linked about inversion centers by pairs of C—H⋯O hydrogen bonds and additional π–π interactions between inversion‐related pairs of 2,6‐di­hydroxy­benzoate ligands to generate a three‐dimensional network.  相似文献   

14.
Structures of Ionic Di(arenesulfonyl)amides. 8. Sodium Bis[di(4‐fluorobenzenesulfonyl)amido‐N]argentate: A Heterobimetallic Complex Exhibiting a Lamellar Layer Structure and Short C–H···F–C Interlayer Contacts Na[Ag{N(SO2–C6H4–4‐F)2}2] (monoclinic, C2/c, Z′ = 1/2) is the first heterobimetallic representative in a well‐documented class of layered inorgano‐organic solids where the inorganic component is comprised of metal cations and coordinating N(SO2)2 groups and the outer regions are formed by the aromatic rings of the di(arenesulfonyl)amide entities, which adopt a folded conformation approximating to mirror symmetry. The inversion‐symmetric bis(amido)argentate unit of the novel compound displays an exactly linear N–Ag–N core and short Ag–N bonds of 217.55(17) pm (at ?140 °C); the coordination number of the silver ion is extended to 2 + 6 by four internal and two external Ag···O secondary interactions. The polar lamella is constructed from rows of Na+ ions located on twofold axes, alternating with bis(amido)argentate strands reinforced by Ag···O interactions and weak C–H···O hydrogen bonds; Na+ is embedded in an O6 environment. Adjacent layers are cross‐linked via short C–H···F–C contacts suggestive of weak hydrogen bonding enhanced by cooperativity.  相似文献   

15.
A series of silver(I) supramolecular complexes, namely, {[Ag(L24)](NO3)}n ( 1 ), [Ag2(L24)(NO2)2]n ( 2 ), and {[Ag1.25(L24)(DMF)](PF6)1.25}n ( 3 ) were prepared by the reactions of 1‐(2‐pyridyl)‐2‐(4‐pyridyl)‐1,2,4‐triazole (L24) and silver(I) salts with different anions (AgNO3, AgNO2, AgPF6). Single‐crystal X‐ray diffraction indicates that 1 – 3 display diverse supramolecular networks. The structure of dinuclear complex 1 is composed of a six‐membered Ag2N4 ring with the Ag ··· Ag distance of 4.4137(3) Å. In complex 2 , the adjacent AgI centers are interlinked by L24 ligands into a 1D chain, the adjacent of which are further extended by the bridged nitrites to construct a 2D coordination architecture. Complex 3 shows a 3D (3,4)‐connected framework, which is generated by the linkage of L24 ligands. All complexes were characterized by IR spectra, elemental analysis, and powder X‐ray diffraction. Notably, a structural comparison of the complexes demonstrates that their structures are predominated by the nature of anions. Additionally, 1 and 2 show efficient dichromate (Cr2O72–) capture in water system, which can be ascribed to the anion‐exchange.  相似文献   

16.
Reactions of divalent Zn‐Hg metal ions with 1,3‐imidazolidine‐2‐thione (imdtH2) in 1 : 2 molar ratio have formed monomeric complexes, [Zn(η1‐S‐imdtH2)2(OAc)2] ( 1 ), [Cd((η1‐SimdtH2)2I2] ( 2 ), [Cd(η1‐S‐imdtH2)2Br2] ( 3 ), and [Hg(η1‐S‐imdtH2)2I2] ( 4 ). Complexes 1 – 4 , have been characterized by elemental analysis (C, H, N), spectroscopy (IR, 1H, NMR) and x‐ray crystallography ( 1 ‐ 4 ). Hydrogen bonding between oxygen of acetate and imino hydrogen of ligand, {N(2)–H(2C)···O(2)#} in 1 , ring CH and imino hydrogen, {C(2A)–H(2A)···Br(2)#} in 3 have formed H‐bonded dimers. Similarly, the interactions between molecular units of complexes 2 and 4 have yielded 2D polymers. The polymerization occurs via intermolecular interactions between thione sulfur and imino hydrogen, {N(2)–H(2)···S(1)#}, imino hydrogen and the iodine atom, {NH(1)···I(2)#} in 2 and imino hydrogen – iodine atom {N(2A)–H(2A)···I(2)} and I···I interaction in 4 . Crystal data: [Zn(η1‐S‐imdtH2)2(OAc)2] ( 1 ), C10H18N4O4S2Zn, orthorhombic, Pbcn, a = 9.3854(7) Å, b = 12.4647(10) Å, c = 13.2263(11) Å; V = 1547.3(2) Å3, Z = 4, R = 0.0280 [Cd((η1‐S‐imdtH2)2I2] ( 2 ), C6H12CdI2N4S2, orthorhombic, Pnma, a = 13.8487(10) Å, b = 14.4232(11) Å, c = 7.0659(5) Å; Z = 4, V = 1411.36(18) Å3, R = 0.0186.  相似文献   

17.
Polysulfonylamines. CLXV. Crystal Structures of Metal Di(methanesulfonyl)amides. 14. Cs3Ag[(MeSO2)2N]4 and CsAg[(MeSO2)2N]2: A Three‐Dimensional and a Layered Coordination Polymer Containing Bis(dimesylamido‐N)argentate Building Blocks Serendipitous formation pathways and low‐temperature X‐ray structures are reported for the coordination compounds Cs3A2[AgA2] ( 1 ) and Cs[AgA2] ( 2 ), where A represents the pentadentate dimesylamide ligand (MeSO2)2N. Both phases (monoclinic, space group C2/c, Z′ = 1/2) contain inversion‐symmetric bis(dimesylamido‐N)argentate units displaying exactly linear N—Ag—N cores and short, predominantly covalent Ag—N bonds [ 1 : 213.5(2), 2 : 213.35(12) pm]; in each case, the coordination number of the silver ion is extended to 2 + 6 by four internal and two external Ag···O secondary interactions. The three‐dimensional coordination polymer 1 is built up from alternating layer substructures [{Cs(1)}{A}4/2] with Cs(1) lying on twofold rotation axes and [{Cs(2)}2{AgA2}4/4]+ with Cs(2) occupying general positions. Within the substructural layers, both types of cesium cation have approximately planar O4 environments, whereas the final coordination spheres including interlayer bonds are extended to O6 for Cs(1) and to O8N for Cs(2). Compound 2 , in contrast, forms a genuine layer structure. The layers are constructed from Cs+ chains located on twofold rotation axes, alternating with [AgA2] stacks reinforced by Ag···O secondary interactions and weak C—H···O hydrogen bonds; Cs+ is embedded in an O8 environment. Both structures are pervaded by a three‐dimensional C—H···O network.  相似文献   

18.
Two coordination polymers [Ag(dach)]n(NO3)n ( 1 ) and [Ag(teda)(F3CSO3)]n ( 2 ) (dach = 1, 2‐diaminocyclohexane, teda = 1, 4‐diazabicyclo[2.2.2]octane) have been synthesized and characterized by X‐ray single crystal analysis and cytotoxicity investigation. Compound 1 has a one‐dimensional chain‐like structure which is extended by ligand unsupported Ag···Ag interactions, hydrophobic interaction and hydrogen bonds into a three‐dimensional supramolecular array while compound 2 shows three‐dimensional diamond‐like framework constructed by coordination bonds. The high cytotoxities of these two compounds imply that they are potential candidates for antitumor agents.  相似文献   

19.
[K(18C6)]2[Pd2Cl6] ( 1 ) (18C6 = 18‐crown‐6) was found to react with pyridines in a strictly stoichiometric ratio 1 : 2 in methylene chloride or nitromethane to yield trichloropalladate(II) complexes [K(18C6)][PdCl3(py*)] (py* = py, 2a ; 4‐Bnpy, 2b ; 4‐tBupy, 2c ; Bn = benzyl; tBu = tert‐butyl). The reaction of 1 with pyrimidine (pyrm) in a 1 : 1 ratio led to the formation of the pyrimidine‐bridged bis(trichloropalladate) complex [K(18C6)]2[(PdCl3)2(μ‐pyrm)] ( 3 ). The identities of the complexes were confirmed by means of NMR spectroscopy (1H, 13C) and microanalysis. The X‐ray structure analysis of 2a reveals square‐planar coordination of the Pd atom in the [PdCl3(py)]? anion. The pyridine plane forms with the complex plane an angle of 55.8(2)°. In the [K(18C6)]+ cation the K+ lies outside the mean plane of the crown ether (defined by the 6 O atoms) by 0.816(1) Å. There are tight K···Cl contacts between the cation and the anion (K···Cl1 3.340(2) Å, K···Cl2 3.166(2) Å). To gain an insight into the conformation of the [PdCl3(py)]? anion, DFT calculations were performed showing that the equilibrium structure ( 6eq ) has an angle between the pyridine ligand and the complex plane of 35.3°. Rotation of the pyridine ligand around the Pd–N vector exhibited two transition states where the pyridine ligand lies either in the complex plane ( 6TS pla, 0.87 kcal/mol above 6eq ) or is perpendicular to it ( 6TS per, 3.76 kcal/mol above 6eq ). Based on an energy decomposition analysis the conformation of the anion is discussed in terms of repulsive steric interactions and of stabilizing σ and π orbital interactions between the PdCl3? moiety and the pyridine ligand.  相似文献   

20.
采用水热法设计合成了两个新型三维超分子化合物H2L·H2O (1)和[Ag(bpy)2]·HL·H2O (2) (其中bpy=2,2'-联吡啶, H2L=2,4′-二羧基二苯甲酮),晶体结构分析表明,它们均是通过氢键采用不同的连接方式拓展而成。其中,化合物1 是2,4′-二羧基二苯甲酮和水分子通过O–H···O氢键形成的一维梯状链扩展构筑的三维超分子体系;化合物2 则是2,4′-二羧基二苯甲酮和水分子通过两种氢键形成含有一维隧道的三维超分子体系。有趣的是,[Ag(bpy)2]+ 阳离子通过π–π 堆积和弱的Ag···Ag相互作用连在一起,进而以客体形式填充其中。荧光性质研究表明,由于存在bpy的螯合与堆积效应,化合物2相比配体和化合物1,其荧光发射峰发生红移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号