首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of [K(BIPMMesH)] (BIPMMes={C(PPh2NMes)2}2?; Mes=C6H2‐2,4,6‐Me3) with [UCl4(thf)3] (1 equiv) afforded [U(BIPMMesH)(Cl)3(thf)] ( 1 ), which generated [U(BIPMMes)(Cl)2(thf)2] ( 2 ), following treatment with benzyl potassium. Attempts to oxidise 2 resulted in intractable mixtures, ligand scrambling to give [U(BIPMMes)2] or the formation of [U(BIPMMesH)(O)2(Cl)(thf)] ( 3 ). The complex [U(BIPMDipp)(μ‐Cl)4(Li)2(OEt2)(tmeda)] ( 4 ) (BIPMDipp={C(PPh2NDipp)2}2?; Dipp=C6H3‐2,6‐iPr2; tmeda=N,N,N′,N′‐tetramethylethylenediamine) was prepared from [Li2(BIPMDipp)(tmeda)] and [UCl4(thf)3] and, following reflux in toluene, could be isolated as [U(BIPMDipp)(Cl)2(thf)2] ( 5 ). Treatment of 4 with iodine (0.5 equiv) afforded [U(BIPMDipp)(Cl)2(μ‐Cl)2(Li)(thf)2] ( 6 ). Complex 6 resists oxidation, and treating 4 or 5 with N‐oxides gives [{U(BIPMDippH)(O)2‐ (μ‐Cl)2Li(tmeda)] ( 7 ) and [{U(BIPMDippH)(O)2(μ‐Cl)}2] ( 8 ). Treatment of 4 with tBuOLi (3 equiv) and I2 (1 equiv) gives [U(BIPMDipp)(OtBu)3(I)] ( 9 ), which represents an exceptionally rare example of a crystallographically authenticated uranium(VI)–carbon σ bond. Although 9 appears sterically saturated, it decomposes over time to give [U(BIPMDipp)(OtBu)3]. Complex 4 reacts with PhCOtBu and Ph2CO to form [U(BIPMDipp)(μ‐Cl)4(Li)2(tmeda)(OCPhtBu)] ( 10 ) and [U(BIPMDipp)(Cl)(μ‐Cl)2(Li)(tmeda)(OCPh2)] ( 11 ). In contrast, complex 5 does not react with PhCOtBu and Ph2CO, which we attribute to steric blocking. However, complexes 5 and 6 react with PhCHO to afford (DippNPPh2)2C?C(H)Ph ( 12 ). Complex 9 does not react with PhCOtBu, Ph2CO or PhCHO; this is attributed to steric blocking. Theoretical calculations have enabled a qualitative bracketing of the extent of covalency in early‐metal carbenes as a function of metal, oxidation state and the number of phosphanyl substituents, revealing modest covalent contributions to U?C double bonds.  相似文献   

2.
Hypercoordination of main‐group elements such as the heavier Group 14 elements (silicon, germanium, tin, and lead) usually requires strong electron‐withdrawing ligands and/or donating groups. Herein, we present the synthesis and characterization of two hexaaryltin(IV) dianions in form of their dilithium salts [Li2(thf)2{Sn(2‐pyMe)6}] (pyMe=C5H3N‐5‐Me) ( 2 ) and [Li2{Sn(2‐pyOtBu)6}] (pyOtBu=C5H3N‐6‐OtBu) ( 3 ). Both complexes are stable in the solid state and solution under inert conditions. Theoretical investigations of compound 2 reveal a significant valence 5s‐orbital contribution of the tin atom forming six strongly polarized tin–carbon bonds.  相似文献   

3.
The reactions of PhCH2SiMe3 ( 1 ), PhCH2SiMe2tBu ( 2 ), PhCH2SiMe2Ph ( 3 ), 3,5‐Me2C6H3CH2SiMe3 ( 4 ), and 3,5‐Me2C6H3CH2SiMe2tBu ( 5 ) with nBuLi in tetramethylethylenediamine (tmeda) afford the corresponding lithium complexes [Li(tmeda)][CHRSiMe2R′] (R, R′ = Ph, Me ( 6 ), Ph, tBu ( 7 ), Ph, Ph ( 8 ), 3,5‐Me2C6H3, Me ( 9 ), and 3,5‐Me2C6H3, tBu ( 10 )), respectively. The new compounds 5 , 7 , 8 , 9 and 10 have been characterized by 1H and 13C NMR spectroscopy, compounds 7 , 8 and 9 also by X‐ray structure analysis.  相似文献   

4.
张永强  王佰全  徐善生  周秀中 《中国化学》2002,20(11):1388-1392
IntroductionWerecentlyreportedanintramolecularthermalrear rangementbetweenSi—SiandFe—Febondsinthedinu clearironcomplex { (Me2 SiSiMe2 ) [(η5 C5H4 )Fe(CO) ]2 (μ CO) 2 } (Scheme 1) .1 5Thethermalrearrangementwaslaterextendedtogermanium ironandsilicon rutheni umanalogues .6 8Th…  相似文献   

5.
The reaction of monomeric [(TptBu,Me)LuMe2] (TptBu,Me=tris(3‐Me‐5‐tBu‐pyrazolyl)borate) with primary aliphatic amines H2NR (R=tBu, Ad=adamantyl) led to lutetium methyl primary amide complexes [(TptBu,Me)LuMe(NHR)], the solid‐state structures of which were determined by XRD analyses. The mixed methyl/tetramethylaluminate compounds [(TptBu,Me)LnMe({μ2‐Me}AlMe3)] (Ln=Y, Ho) reacted selectively and in high yield with H2NR, according to methane elimination, to afford heterobimetallic complexes: [(TptBu,Me)Ln({μ2‐Me}AlMe2)(μ2‐NR)] (Ln=Y, Ho). X‐ray structure analyses revealed that the monomeric alkylaluminum‐supported imide complexes were isostructural, featuring bridging methyl and imido ligands. Deeper insight into the fluxional behavior in solution was gained by 1H and 13C NMR spectroscopic studies at variable temperatures and 1H–89Y HSQC NMR spectroscopy. Treatment of [(TptBu,Me)LnMe(AlMe4)] with H2NtBu gave dimethyl compounds [(TptBu,Me)LnMe2] as minor side products for the mid‐sized metals yttrium and holmium and in high yield for the smaller lutetium. Preparative‐scale amounts of complexes [(TptBu,Me)LnMe2] (Ln=Y, Ho, Lu) were made accessible through aluminate cleavage of [(TptBu,Me)LnMe(AlMe4)] with N,N,N′,N′‐tetramethylethylenediamine (tmeda). The solid‐state structures of [(TptBu,Me)HoMe(AlMe4)] and [(TptBu,Me)HoMe2] were analyzed by XRD.  相似文献   

6.
The reduction of N,C,N‐chelated bismuth chlorides [C6H3‐2,6‐(CH?NR)2]BiCl2 [where R=tBu ( 1 ), 2′,6′‐Me2C6H3 ( 2 ), or 4′‐Me2NC6H4 ( 3 )] or N,C‐chelated analogues [C6H2‐2‐(CH?N‐2′,6′‐iPr2C6H3)‐4,6‐(tBu)2]BiCl2 ( 4 ) and [C6H2‐2‐(CH2NEt2)‐4,6‐(tBu)2]BiCl2 ( 5 ) is reported. Reduction of compounds 1 – 3 gave monomeric N,C,N‐chelated bismuthinidenes [C6H3‐2,6‐(CH?NR)2]Bi [where R=tBu ( 6 ), 2′,6′‐Me2C6H3 ( 7 ) or 4′‐Me2NC6H4 ( 8 )]. Similarly, the reduction of 4 led to the isolation of the compound [C6H2‐2‐(CH?N‐2′,6′‐iPr2C6H3)‐4,6‐(tBu)2]Bi ( 9 ) as an unprecedented two‐coordinated bismuthinidene that has been structurally characterized. In contrast, the dibismuthene {[C6H2‐2‐(CH2NEt2)‐4,6‐(tBu)2]Bi}2 ( 10 ) was obtained by the reduction of 5 . Compounds 6 – 10 were characterized by using 1H and 13C NMR spectroscopy and their structures, except for 7 , were determined with the help of single‐crystal X‐ray diffraction analysis. It is clear that the structure of the reduced products (bismuthinidene versus dibismuthene) is ligand‐dependent and particularly influenced by the strength of the N→Bi intramolecular interaction(s). Therefore, a theoretical survey describing the bonding situation in the studied compounds and related bismuth(I) systems is included. Importantly, we found that the C3NBi chelating ring in the two‐coordinated bismuthinidene 9 exhibits significant aromatic character by delocalization of the bismuth lone pair.  相似文献   

7.
A chromium(I) dinitrogen complex reacts rapidly with O2 to form the mononuclear dioxo complex [TptBu,MeCrV(O)2] (TptBu,Me=hydrotris(3‐tert‐butyl‐5‐methylpyrazolyl)borate), whereas the analogous reaction with sulfur stops at the persulfido complex [TptBu,MeCrIII(S2)]. The transformation of the putative peroxo intermediate [TptBu,MeCrIII(O2)] (S=3/2) into [TptBu,MeCrV(O)2] (S=1/2) is spin‐forbidden. The minimum‐energy crossing point for the two potential energy surfaces has been identified. Although the dinuclear complex [(TptBu,MeCr)2(μ‐O)2] exists, mechanistic experiments suggest that O2 activation occurs on a single metal center, by an oxidative addition on the quartet surface followed by crossover to the doublet surface.  相似文献   

8.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

9.
A sterically encumbering multidentate β‐diketiminato ligand, tBuL2 (tBuL2=[ArNC(tBu)CHC(tBu)NCH2CH2N(Me)CH2CH2NMe2]?, Ar=2,6‐iPr2C6H3), is reported in this study along with its coordination chemistry to zirconium(IV). Using the lithio salt of this ligand, Li(tBuL2) ( 4 ), the zirconium(IV) precursor (tBuL2)ZrCl3 ( 6 ) could be readily prepared in 85 % yield and structurally characterized. Reduction of 6 with 2 equiv of KC8 resulted in formation of the terminal and mononuclear zirconium imide‐chloride [C(tBu)CHC(tBu)NCH2CH2N(Me)CH2CH2NMe2]Zr(=NAr)(Cl) ( 7 ) as the result of reductive C=N cleavage of the imino fragment in the multidentate ligand tBuL2 by an elusive ZrII species (tBuL2)ZrCl ( A ). The azabutadienyl ligand in 7 can be further reduced by 2 e? with KC8 to afford the anionic imide [K(THF)2]{[CH(tBu)CHC(tBu)NCH2CH2N(Me)CH2CH2N(Me)CH2]Zr=NAr} ( 8‐2THF ) in 42 % isolated yield. Complex 8‐2THF results from the oxidative addition of an amine C?H bond followed by migration to the vinylic group of the formal [C(tBu)CHC(tBu)NCH2CH2N(Me)CH2CH2NMe2]? ligand in 7 . All halides in 6 can be replaced with azides to afford (tBuL2)Zr(N3)3 ( 9 ) which was structurally characterized, and reduction with two equiv of KC8 also results in C=N bond cleavage of tBuL2 to form [C(tBu)CHC(tBu)NCH2CH2N(Me)CH2CH2NMe2]Zr(=NAr)(N3) ( 10 ), instead of the expected azide disproportionation to N3? and N2. Solid‐state single crystal structural studies confirm the formation of mononuclear and terminal zirconium imido groups in 7 , 8‐Et2O , and 10 with Zr=NAr distances being 1.8776(10), 1.9505(15), and 1.881(3) Å, respectively.  相似文献   

10.
Activated with methylaluminoxane (MAO), phenoxy‐based zirconium complexes bis[(3‐tBu‐C6H3‐2‐O)‐CH?NC6H5]ZrCl2, bis[(3,5‐di‐tBu‐C6H2‐2‐O)‐PhC?NC6H5] ZrCl2, and bis[(3,5‐di‐tBu‐C6H2‐2‐O)‐PhC?N(2‐F‐C6H4)]ZrCl2 for the first time have been used for the copolymerization of ethylene with 10‐undecen‐1‐ol. In comparison with the conventional metallocene, the phenoxy‐based zirconium complexes exhibit much higher catalytic activities [>107 g of polymer (mol of catalyst)?1 h?1]. The incorporation of 10‐undecen‐1‐ol into the copolymers and the properties of the copolymers are strongly affected by the catalyst structure. Among the three catalysts, complex c is the most favorable for preparing higher molecular weight functionalized polyethylene containing a higher content of hydroxyl groups. Studies on the polymerization conditions indicate that the incorporated commoner content in the copolymers mainly depends on the comonomer concentration in the feed. The catalytic activity is slightly affected by the Al(MAO)/Zr molar ratio but decreases greatly with an increase in the polymerization temperature. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5944–5952, 2005  相似文献   

11.
An Unusual Ambivalent Tin(II)‐oxo Cluster The reaction of the copper aryl CuDmp (Dmp = 2, 6‐Mes2C6H3; Mes = 2, 4, 6‐Me3C6H2) with the stannanediyl Sn{1, 2‐(tBuCH2N)2C6H4} followed by hydrolysis affords in the presence of lithium‐tert‐butoxide the tin(II)‐oxo cluster {(Et2O)(LiOtBu)(SnO)(CuDmp)}2 ( 5 ) in small yield. The solid state structure of the colorless compound shows a central Li2Sn2O2(OtBu)2 fragment with heterocubane structure. In addition, the Li‐acceptor and O(Sn)‐donor atoms are used for the coordination of one molecule diethylether and copper aryl CuDmp, respectively.  相似文献   

12.
A series of new titanium(IV) complexes with o‐metalated arylimine and/or cis‐9,10‐dihydrophenanthrenediamide ligands, [o‐C6H4(CH?NR)TiCl3] (R=2,6‐iPr2C6H3 ( 3 a ), 2,6‐Me2C6H3 ( 3 b ), tBu ( 3 c )), [cis‐9,10‐PhenH2(NR)2TiCl2] (PhenH2=9,10‐dihydrophenanthrene; R=2,6‐iPr2C6H3 ( 4 a ), 2,6‐Me2C6H3 ( 4 b ), tBu ( 4 c )), [{cis‐9,10‐PhenH2(NR)2}{o‐C6H4(HC?NR)}TiCl] (R=2,6‐iPr2C6H3 ( 5 a ), 2,6‐Me2C6H3 ( 5 b ), tBu ( 5 c )), have been synthesised from the reactions of TiCl4 with o‐C6H4(CH?NR)Li (R=2,6‐iPr2C6H3, 2,6‐Me2C6H3, tBu). Complexes 4 and 5 were formed unexpectedly from the reactions of TiCl4 with two or three equivalents of the corresponding o‐C6H4(CH?NR)Li followed by sequential intramolecular C? C bond‐forming reductive elimination and oxidative coupling reactions. Attempts to isolate the intermediates, [{o‐C6H4(CH?NR)}2TiCl2] ( 2 ), were unsuccessful. All complexes were characterised by 1H and 13C NMR spectroscopy, and the molecular structures of 3 a , 4 a – c , 5 a , and 5 c were determined by X‐ray crystallography.  相似文献   

13.
Hydrogallation of Me3Si–C≡C–NR'2 with R2Ga–H (R = tBu, CH2tBu, iBu) yielded Ga/N‐based active Lewis pairs, R2Ga–C(SiMe3)=C(H)–NR'2 ( 7 ). The Ga and N atoms adopt cis‐positions at the C=C bonds and show weak Ga–N interactions. tBu2GaH and Me3Si–C≡C–N(C2H4)2NMe afforded under exposure of daylight the trifunctional digallium(II) compound [MeN(C2H4)2N](H)C=C(SiMe3)Ga(tBu)–Ga(tBu)C(SiMe3)=C(H)[N(C2H4)2NMe] ( 8 ), which results from elimination of isobutene and H2 and Ga–Ga bond formation. 8 was selectively obtained from the ynamine and [tBu(H)Ga–Ga(H)tBu]2[HGatBu2]2. 7a (R = tBu; NR'2 = 2,6‐Me2NC5H8) and H8C4N–C≡N afforded the adduct tBu2Ga‐C(SiMe3)=C(H)(2,6‐Me2NC5H8) · N≡C–NC4H8 ( 11 ) with the nitrile bound to gallium. The analogous ALP with harder Al atoms yielded an adduct of the nitrile dimer or oligomers of the nitrile at room temperature. The reaction of 7a with Ph–N=C=O led to the insertion of two NCO groups into the Ga–Cvinyl bond to yield a GaOCNCN heterocycle with Ga bound to O and N atoms ( 12 ).  相似文献   

14.
The syntheses of the transition metal complexes cis‐[(4‐tBu‐2,6‐{P(O)(OiPr)2}2C6H2SnCl)2MX2] ( 1 , M=Pd, X=Cl; 2 , M=Pd, X=Br; 3 , M=Pd, X=I; 4 , M=Pt, X=Cl), cis‐[{2,6‐(Me2NCH2)2C6H3SnCl}2MX2] ( 5 , M=Pd, X=I; 6 , M=Pt, X=Cl), trans‐[{2,6‐(Me2NCH2)2C6H3SnI}2PtI2] ( 7 ) and trans‐[(4‐tBu‐2,6‐{P(O)(OiPr)2}2 C6H2SnCl)PdI2]2 ( 8 ) are reported. Also reported is the serendipitous formation of the unprecedented complexes trans‐[(4‐tBu‐2,6‐{P(O)(OiPr)2}2C6H2SnCl)2 Pt(SnCl3)2] ( 10 ) and [(4‐tBu‐2,6‐{P(O) (OiPr)2}2C6H2SnCl)3Pt(SnCl3)2] ( 11 ). The compounds were characterised by elemental analyses, 1H, 13C, 31P, 119Sn and 195Pt NMR spectroscopy, single‐crystal X‐ray diffraction analysis, UV/Vis spectroscopy and, in the cases of compounds 1 , 3 and 4 , also by Mössbauer spectroscopy. All the compounds show the tin atoms in a distorted trigonal‐bipyramidal environment. The Mössbauer spectra suggest the tin atoms to be present in the oxidation state III. The kinetic lability of the complexes was studied by redistribution reactions between compounds 1 and 3 as well as between 1 and cis‐[{2,6‐(Me2NCH2)2C6H3SnCl}2PdCl2]. DFT calculations provided insights into both the bonding situation of the compounds and the energy difference between the cis and trans isomers. The latter is influenced by the donor strength of the pincer‐type ligands.  相似文献   

15.
A series of zwitterionic aluminum complexes of the type AlX[(2‐O‐3,5‐tBu2C6H2)3PZ] (AlX [O3PZ]; X = Cl, Me, Et, and iBu; Z = H, Me) containing C3‐symmetric, formally dianionic, facially tridentate ligands [O3PZ]2? were prepared and structurally characterized. Although serendipitous, these complexes can be readily synthesized by partial protonolysis of AlX3 with equal molar (2‐HO‐3,5‐tBu2C6H2)3P (H3[O3P]) or [(2‐HO‐3,5‐tBu2C6H2)3p.m.e](OTf) ({H3[O3PMe]}OTf) in THF at 25°C or elevated temperatures. Alcoholysis of AlMe[O3PMe] ( 2 ) with an excess amount of MeOH in refluxing toluene generates AlOMe[O3PMe] ( 10 ). Salt metathesis of AlCl[O3PMe] ( 6 ) with nBuM (M = Li, MgCl) and NaOR (R = tBu, Ph) in ethereal solutions affords AlnBu[O3PMe] ( 9 ) and AlOR[O3PMe] (R = tBu ( 11 ), Ph ( 12 )), respectively. Reactivity of 10 , 11 , and 12 with respect to catalytic ring‐opening polymerization of ε‐caprolactone is assessed.  相似文献   

16.
A series of metal compounds (M = Al, Ti, W, and Zn) containing pyrrole‐imine ligands have been prepared and structurally characterized. The reactions of AlMe3 with one and three equivs of pyrrole‐imine ligand [C4H3NH‐(2‐CH=N? CH2Ph)] ( 1 ) generated aluminum compounds Al[C4H3N‐(2‐CH=N? CH2Ph)]Me2 ( 2 ) and Al[C4H3N‐(2‐CH=NCH2Ph)]3 ( 3 ), respectively, in relatively high yield. Reacting two equivs of 1 with Ti(OiPr)4, W(NHtBu)2(=NtBu)2, or ZnMe2 afforded Ti[C4H3N‐(2‐CH=NCH2Ph)]2(OiPr)2 ( 4 ), W[C4H3N‐(2‐CH=NCH2Ph)]2(=NtBu)2 ( 5 ), and Zn[C4H3N‐(2‐CH=NCH2Ph)]2 ( 6 ), respectively. All the compounds have been characterized by 1H and 13C NMR spectroscopy. Compounds 3 – 6 have also been characterized by single‐crystal X‐ray structural analysis. The biting angles of pyrrole‐imine ligand with metals decrease and their related M? Npyrrole and M? Nimine bond lengths increase in the order of 6 , 3 , 4 , and 5 .  相似文献   

17.
Synthesis and Characterisation of the Siloxialanes [H2AlOSiMe3]n and [HAl(OtBu)(OSiMe3)]2 as well as the Use of [H2AlOSiMe3]n and [H2AlOtBu]2 as Reducing Agents for a Tin(II) Amide Following the synthesis of [H2AlOtBu]2 ( 1 ) and [HAl(OtBu)2]2 ( 2 ) the siloxialane [H2AlOSiMe3]n ( 3 ) was synthesized and has been subject to single crystal X‐ray analysis for the first time. The molecule 3 is tetrameric (n = 4) in solution and polymeric (n = ∞) in the solid state. 3 is also obtained together with the siloxide [Al(OSiMe3)3]2 ( 5 ) by the reaction of the aluminiumhydride with the double molar amount of trimethylsilanol. The expected monohydride [HAl(OSiMe3)2]2 ( 4 ) was not formed. The heteroleptic monohydride [HAl(OtBu)(OSiMe3)]2 ( 6 ) was synthesized by the reaction of 3 with an equimolar amount of tert‐butanol and was also generated by the addition of trimethylsilanol to an equimolar amount of the alkoxialane [H2AlOtBu]2 ( 1 ). Compound 6 was characterized by single crystal X‐ray diffraction analysis. Additionally we investigated the reducing force of the dihydrides 1 and 3 towards the cyclic diazastannylene Me2Si(NtBu)2Sn ( 7 ). In the course of this reaction SnII in 7 was reduced to elementary tin whereas the hydrides were oxidized to hydrogene. Tin is obtained in its β‐form as found by powder‐X‐ray diffraction. The shapes of the metal precipitates (porous, sponge‐like pieces or nanoscaled powders) depend on the conditions of reactions. Besides the elements the spirocyclic aminoalkoxialane [Me2Si(NtBu)2AlOtBu]2 ( 8 ) or aminosiloxialane [Me2Si(NtBu)2AlOSiMe3]2 ( 9 ) are formed. Structural details of the molecules 8 and 9 can be derived from single crystal X‐ray analyses.  相似文献   

18.
The new zirconium bent metallocenes (COT)Zr(CptBu2)Cl ( 1 ) and (COT)Zr(Cp′′)Cl ( 2 ) were synthesized in a straightforward manner and in high yields ( 1 : 91 %, 2 : 86 %) by treatment of in situ‐prepared (COT)ZrCl2(THF) with 1 equiv. of K(CptBu2) or K(Cp′′), respectively (COT = η8‐cyclooctatetraenyl; CptBu2 = η5‐1,3‐di‐tert‐butylcyclopentadienyl; Cp′′ = η5‐1,3‐bis(trimethylsilyl)cyclopentadienyl). Subsequent reaction of 1 with 1 equiv. of phenyllithium afforded the σ‐phenyl derivative (CptBu2)Zr(COT)Ph ( 3 ) as orange crystals in 83 % isolated yield. All three new compounds were structurally characterized through single‐crystal X‐ray diffraction.  相似文献   

19.
A series of palladium complexes ( 2a–2g ) ( 2a : [6‐tBu‐2‐PPh2‐C6H3O]PdMe(Py); 2b : [6‐C6F5–2‐PPh2‐C6H3O]PdMe(Py); 2c : [6‐tBu‐2‐PPhtBu‐C6H3O]PdMe(Py); 2d : [2‐PPhtBu‐C6H4O] PdMe(Py); 2e : [6‐SiMe3–2‐PPh2‐C6H3O]PdMe(Py); 2f : [2‐tBu‐6‐(Ph2P=O)‐C6H3O]PdMe(Py); 2g : [6‐SiMe3–2‐(Ph2P=O)‐C6H3S]PdMe(Py)) bearing phosphine (oxide)‐(thio) phenolate ligand have been efficiently synthesized and characterized. The solid‐state structures of complexes 2d , 2f and 2g have been further confirmed by single‐crystal X‐ray diffraction, which revealed a square‐planar geometry of palladium center. In the presence of B(C6F5)3, these complexes can be used as catalysts to polymerize norbornene (NB) with relatively high yields, producing vinyl‐addition polymers. Interestingly, 2a /B(C6F5)3 system catalyzed the polymerization of NB in living polymerization manner at high temperature (polydispersity index 1.07, Mn up to 1.5 × 104). The co‐polymerization of NB and polar monomers was also studied using catalysts 2a and 2f . All the obtained co‐polymers could dissolve in common solvent.  相似文献   

20.
Two new arene inverted‐sandwich complexes of uranium supported by siloxide ancillary ligands [K{U(OSi(OtBu)3)3}2(μ‐η66‐C7H8)] ( 3 ) and [K2{U(OSi(OtBu)3)3}2(μ‐η66‐C7H8)] ( 4 ) were synthesized by the reduction of the parent arene‐bridged complex [{U(OSi(OtBu)3)3}2(μ‐η66‐C7H8)] ( 2 ) with stoichiometric amounts of KC8 yielding a rare family of inverted‐sandwich complexes in three states of charge. The structural data and computational studies of the electronic structure are in agreement with the presence of high‐valent uranium centers bridged by a reduced tetra‐anionic toluene with the best formulation being UV–(arene4?)–UV, KUIV–(arene4?)–UV, and K2UIV–(arene4?)–UIV for complexes 2 , 3 , and 4 respectively. The potassium cations in complexes 3 and 4 are coordinated to the siloxide ligands both in the solid state and in solution. The addition of KOTf (OTf=triflate) to the neutral compound 2 promotes its disproportionation to yield complexes 3 and 4 (depending on the stoichiometry) and the UIV mononuclear complex [U(OSi(OtBu)3)3(OTf)(thf)2] ( 5 ). This unprecedented reactivity demonstrates the key role of potassium for the stability of these complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号