首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The curing of a thermosetting powder coating was studied by means of differential scanning calorimetry (DSC). The isothermal cure was simulated by non-isothermal experiments. The results of the simulation were compared with experimental isothermal data. From non-isothermal isoconversional procedures (free model), it was concluded that these permit simulation of the isothermal cure but do not enable us to determine the complete kinetic triplet (A preexponential factor, E activation energy, f(a) and/or g(a) function of conversion). Non-isothermal procedures based on a single heating rate or on master curves present difficulties for determination of all the kinetic parameters, due to the compensation effect between preexponential factor and activation energy. The kinetic triplet can be determined by a combination of various non-isothermal methods or by using experimental isothermal data in addition to non-isothermal data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
The non-isothermal crystallization of α-Fe from Fe81B13Si4C2 amorphous alloy was investigated. The kinetic parameters of crystallization process were determined by Kissinger and Kissinger–Akahira–Sunose (KAS) methods. It was established that the kinetic parameters of transformation do not change with the degree of crystallization in the range of 0.1–0.7. The kinetic model of the crystallization process was determined using the Malek's procedure. It was established that the primary crystallization α-Fe phase from amorphous alloy can be described by Šesták–Berggren autocatalytic model with kinetic triplet Ea = 349.4.0 kJ mol−1, ln A = 50.76 and f(α) = α0.72(1 − α)1.02.  相似文献   

4.
Powder precursor gels with composition xZrO2·(100–x)SiO2, with selected values of x=8, 24, 43 and 75 mol%, were processed by sol-gel chemistry. Differential thermal analysis (DTA) was used to study crystallization in (cubic/tetragonal)-ZrO2 during the heating of the reactive amorphous precursors. Kinetic parameters such as activation energy, Avrami's exponent and frequency factor have been simultaneously calculated from the computed DTA data using a previously reported kinetic model. The crystallization temperature decreases relative to the increase in the amount of ZrO2, the value of the kinetic parameter of the crystallization being related to the value of x.  相似文献   

5.
A kinetic study on decomposition processes of some penicillin and some commercial drugs was carried out. As expected by the complex structures of penicillins, several steps with different activation energies occurred in their decomposition processes. Model-fitting and model-free kinetic approach were applied to non-isothermal and isothermal data. In the model-fitting methods the kinetic triplets (f(α), A and E a) that defines a single reaction step resulted in being at variance with the multi-step nature of penicillins decomposition. The model-free approach represented by isothermal and non-isothermal isoconversional methods, gave dependences of the activation energies on the extent of conversion. The complex nature of the multi-step process of the studied compounds was more easily revealed using a broader temperature range in non-isothermal isoconversional method. The failure in the model fitting method did not allow calculating storage times. Model-fitting and model-free methods, both isothermal and non-isothermal, showed that F1 mechanism is able to describe decomposition processes for drugs (having Phosphomycin salts as active component) for which a single decomposition process occurs. Statistical analysis allowed us to select reliable kinetic parameters related to the decomposition processes for these last compounds. This procedure showed that the values obtained by extrapolation, outside the temperature range where the processes occurred must be used with caution. Indeed half-life and shelf-life values, commonly extrapoled at room temperature, seemed to be unrealistic. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Palladium-boron alloys have been prepared to check their ability to produce metallic glasses when spun from the melt.An amorphous alloy with 31.5 at.% boron obtained in the form of ribbon has been submitted to both isothermal and non-isothermal DSC tests. The isothermal crystallization kinetics have been analyzed according to the Avrami law for phase transformations in solids.The n exponent of the law has been determined to obtain information on the geometrical features of the growing crystals. A confirmation of the calculated n value has been sought through an analysis of non-isothermal DSC peaks  相似文献   

7.
After flowing in a dilatometer bulb for a small fraction of the duration of the transformation, a relaxed melt of poly(ethylene oxide) (M?n = (5.9 ± 0.1) × 103) showed marked increases in isothermal crystallization rate. The extent of increase was greater when flow was imposed at modestly later stages rather than at the earliest stage of a crystallization. Kinetic parameters for the flow-induced crystallizations were obtained via modification of the conventional mathematical treatment of the kinetics of phase change, thereby allowing the analytical resolution of the overall process into flowinduced and quiescent components. Determination of the flow-induced crystallization parameters required independent determination of the kinetic parameters for quiescent crystallizations at that temperature. The Avrami exponents nf which characterized the flow-induced portions of the crystallizations were larger for those instances in which flow was imposed at the more advanced stages of the crystallizations, thus indicating a transition in crystallization mechanism. It is suggested that prior crystallinity present at the time of flow contributed to the crystallization by serving as a source of nucleation sites. However, in light of the experimental procedure employed, values of nf approximating 4 that were obtained are not susceptible to mechanistic interpretations now extant.  相似文献   

8.
The Ozawa concept of generalized time has been used for developing master plots for the different kinetic models describing solid state reactions. These plots can be indistinctly used for analysing isothermal or non-isothermal experimental data. It is demonstrated that it is not possible to discriminate the kinetic model from a single non-isothermal curve without a previous knowledge of the activation energy. However, it has been shown that the ln [(da/dt)/f(a)] data taken from a set of DTG curves obtained at different heating rates lie on a single straight line when represented as a function of 1/T only if the kinetic model really obeyed by the reaction is considered. Moreover, the true values of E and A are obtained from the slope and the intercept of this straight line. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Thermal analysis is one of the most widely used methods for studying the solid state of pharmaceutical substances. TG/DTG and DSC curves provide important information regarding the physical properties of the pharmaceutical compounds (stability, compatibility, polymorphism, kinetic analysis, phase transitions etc.). The purpose of a kinetic investigation is to calculate the kinetic parameters and the kinetic model for the studied process. The results are further used to predict the system’s behaviour in various circumstances. A kinetic study regarding the diazepam, nitrazepam and oxazepam thermal decomposition was performed, under non-isothermal and isothermal conditions and in a nitrogen atmosphere, for the temperature steps: 483, 498, 523, 538 and 553 K. The TG/DTG data were processed by three methods: isothermal model-fitting, Friedman’s isothermal-isoconversional and Nomen-Sempere non-parametric kinetics. In the model-fitting methods the kinetic triplets (f(α), A and E a) that defines a single reaction step resulted in being at variance with the multi-step nature of diazepines decomposition. The model-free approach represented by isothermal and non-isothermal isoconversional methods, gave dependences of the activation energies on the extent of conversion. It is very difficult to obtain an accord with the similar data which resulted under non-isothermal conditions from a previous work. The careful treatment of the kinetic parameters obtained in different thermal conditions was confirmed to be necessary, as well as a different strategy of experimental data processing.  相似文献   

10.
Adsorption of carbon monoxide(II) and oxygen on powders and nanofilms of solid solutions and binary compounds of the ZnSe-CdTe system was studied volumetrically, and by piezoquartz microweighing and IR spectroscopy of multiple disturbed complete internal reflections. The mechanisms and principles of adsorption were established in dependence on the conditions of the habitus of an experimental sample and the composition of the system’s semiconductors, based on an analysis of IR spectra; the thermodynamic and kinetic characteristics of adsorption; experimental dependences αp = f(T), αT = f(P), and αT = f(t); and the acid-base and other physicochemical characteristics of adsorbents and the electron nature of adsorbate molecules. Conclusions drawn earlier as to the retention of local active centers on the surface of a diamond-like semiconductor (which are responsible for adsorption and catalytic processes) upon a change in the habitus of a sample were confirmed. Certain features in the behavior of solid solutions (ZnSe) x (CdTe)1 − x were revealed alongside commonalities with binary compounds (ZnSe, CdTe), testifying to the presence of critical points on “adsorption characteristics-composition” diagrams. The most active adsorbents (with respect to CO and O2) were discovered on the basis of these diagrams, which were used in creating highly sensitive and selective sensors.  相似文献   

11.
Results of an investigation of isothermal crystallization and thermal behavior of poly(ethylene oxide)/poly(ethyl methacrylate) (PEO/PEMA) blends are reported. The blend composition and the crystallization temperature strongly influence the crystallization process from the melt and the melting temperature of PEO. The addition of PEMA to PEO causes a depression in the spherulite growth rate, in the overall kinetic crystallization constant, and in the melting temperature. Experimental data on the radial growth rate G and overall kinetic rate constant Kn are analyzed by means of the latest kinetic theory. From this analysis it emerges that the crystallization of pure PEO and PEO in the blend conforms to the regime I process of surface secondary nucleation. The depression of the melting temperature cannot be explained only in terms of a diluent effect due to the compatibility of the two components in the melt. Annealing and morphological effects, dependent on composition and time, must also be taken into account.  相似文献   

12.
The low-temperature parts of the temperature-heating rate-transformation (T-HR-T) and temperature-time transformation (T-T-T) diagrams were obtained for crystallization processes. A knowledge of the kinetic model governing crystallization is not needed because both transformation curves can be obtained from non-isothermal calorimetric experiments. The calorimetric study was performed by means of differential scanning calorimetry. The method was applied to analyse crystallization processes of Fe-Ni-based amorphous alloys prepared by melt spinning. The compositions studied were Fe40Ni40P14Si6, Fe40Ni40P10Si10 and Fe40Ni40P6Si14. A good concordance was observed between the experimental T-HR-T curves obtained by calculation and the experimental data, which verifies the reliability of the method. In the T-T-T diagrams, the agreement was good in process B1, while in processes A1 and C1 there are small differences that could be related to different crystallization products obtained in isothermal/non-isothermal experiments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Calorimetric study of Se85−x Te15Sn x (x = 0, 2, 4 and 6) glassy alloys have been performed using Differential Scanning Calorimetry (DSC) under non-isothermal conditions at four different heating rates (5, 10, 15 and 20 °C/min). The glass transition temperature and peak crystallization temperature are found to increase with increasing heating rate. It is remarkable to note that a second glass transition region is associated with second crystallization peak for Sn additive Se–Te investigated samples. Three approaches have been employed to study the glass transition region. The kinetic analysis for the first crystallization peak has been taken by three different methods. The glass transition activation energy, the activation energy of crystallization, and Avrami exponent (n) are found to be composition dependent. The crystallization ability is found to increase with increasing Sn content. From the experimental data, the temperature difference (T p − T g) is found to be maximum for Se83Te15Sn2 alloy, which indicates that this alloy is thermally more stable in the composition range under investigation.  相似文献   

14.
The isothermal melt and cold crystallization kinetics of poly(aryl ether ketone ether ketone ketone) are investigated by differential scanning calorimetry over two temperature regions. The Avrami equation describes the primary stage of isothermal crystallization kinetics with the exponent n ≈ 2 for both melt and cold crystallization. With the Hoffman–Weeks method, the equilibrium melting point is estimated to be 406 °C. From the spherulitic growth equation proposed by Hoffman and Lauritzen, the nucleation parameter (Kg) of the isothermal melt and cold crystallization is estimated. In addition, the Kg value of the isothermal melt crystallization is compared to those of the other poly(aryl ether ketone)s. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1992–1997, 2000  相似文献   

15.
The crystallization behavior of Co75-xFexGe15B10 (x=3.0, 4.6 and 6.0) amorphous alloys was monitored by differential thermal analysis and thermo-mechanical analysis. The crystallization process of the melt spun ribbons was interrupted at 450, 525, 650, 800 and 900°C and their microstructures were investigated by X-ray diffractometry. It was observed that the crystallization occurs in a sequential mode attributed to the formation of different types of precipitates. It was shown that the crystallization products change as a function of Fe content. After full crystallization, GeFe, Co3B, FeGe2 and Co2Ge compounds were found as well as a Co rich solid solution. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
The crystallization kinetics of two alloys in the Fe-Ni-P-Si quaternary system have been investigated, with both isothermal and continuous heating experiments, by means of differential scanning calorimetry. Both alloys present two separated crystallization processes. The Johnson-MehlAvrami-Erofeev equation with a rate constant following the Arrhenius behavior gives the best fit of the experimental data. In all processes the value of its JMAE kinetic exponent is not constant. In the nearly stages, n changes steeply revealing the transient nucleation effect to reach values corresponding to a three-dimensional volume growth controlled by diffusion in the central part (0.3<x<0.55). Latter in the transformation n continuously decreases reflecting the saturation of nucleation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The non-isothermal data given by TG curves for poly(3-hydroxybutyrate) (PHB) were studied in order to obtain a consistent kinetic model that better represents the PHB thermal decomposition. Thus, data obtained from the dynamic TG curves were suitably managed in order to obtain the Arrhenius kinetic parameter E according to the isoconversional F-W-O method. Once the E parameters is found, a suitable logA and kinetic model (f(α)) could be calculated. Hence, the kinetic triplet (E±SD, logA±SD and f(α)) obtained for the thermal decomposition of PHB under non-isothermal conditions was E=152±4 kJ mol−1, logA=14.1±0.2 s−1 for the kinetic model, and the autocatalytic model function was: f(α)=αm(1−α)n0.42(1−α)0.56.  相似文献   

18.
The isoconversional method suggested by Friedman and the invariant kinetic parameters method (IKP) were used in order to examine the kinetics of the nonisothermal crystallization of (GeS2)0.3(Sb2S3)0.7. The objective of the paper is to show the usefulness of the IKP method both for determining the activation parameters as well as the model of the investigated process. It was shown that the kinetic triplet [(E, A, f(α), where E is the activation energy, A is the preexponential factor, and f(α) is the differential function of conversion], which results through the application of the IKP method, depends on the set of kinetic models considered. For different sets of kinetic models, proportional values of f(α) are obtained. A criterion for the selection of this set, the use of which lead to the true kinetic triplet corresponding to the analyzed process (E = 163.2 kJ mol?1; A = 2.47 × 1012 min?1 and the Avrami‐Erofeev model, Am, for m = 2.5–2.6 was suggested. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 309–315, 2004  相似文献   

19.
Temperature dependency of crystalline lamellar thickness during crystallization and subsequent melting in isotactic polypropylene crystallized from both quiescent molten state and stress‐induced localized melt was investigated using small angle X‐ray scattering technique. Both cases yield well‐defined crystallization lines where inverse lamellar thickness is linearly dependent on crystallization temperature with the stretching‐induced crystallization line shifted slightly to smaller thickness direction than the isothermal crystallization one indicating both crystallization processes being mediated a mesomorphic phase. However, crystallites obtained via different routes (quiescent melt or stress‐induced localized melt) show different melting behaviors. The one from isothermal crystallization melted directly without significant changing in lamellar thickness yielding well‐defined melting line whereas stress‐induced crystallites followed a recrystallization line. Such results can be associated with the different extent of stabilization of crystallites obtained through different crystallization routes. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 957–963  相似文献   

20.
The thermal decomposition of three new reagent cyclohexylamine-p-tolylglyoxime (L1H2), tertiarybutyl amine-p-tolylglyoxime (L2H2) and secondary butylamine-p-tolylglyoxime (L3H2 and their Co-complexes were studied by both isothermal and nonisothermal methods. As expected, the complex structure of Co-complexes, different steps with different activation energies were realized in decomposition process. Model-fitting and model-free kinetic approaches were applied to nonisothermal and isothermal data. The kinetic triplet (f(α), A and E) related to nonisothermal model-fitting method can not be meaningfully compared with values obtained from isothermal method. The complex nature of the multi-step process of the studied compounds was more easily revealed using a wider temperature range in nonisothermal isoconversional method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号