首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
纳尺度驱动因其在能量转换、物质输送等众多领域的潜在应用得到广泛关注,但实现长程持续驱动依然在原理上面临重大挑战.本文借助双壁碳纳米管的层间范德华相互作用,以热梯度力为基本动力,利用外管缺陷对层间热梯度力的调控作用,提出了一种新型的纳尺度可控持续驱动原理.其基本机理是:外管在周期性缺陷和温度场共同作用下形成周期性的非对称温度梯度,在内管上产生周期性的非对称热梯度力,使得每个周期(驱动单元)上都存在净驱动力,从而推动内管实现长程持续运动.同时,内管的运动方向或速度可通过外管上的控温区域或温差控制.  相似文献   

2.
由于层间距和手性的耦合影响,非公度双壁碳纳米管的层间摩擦行为比较复杂,其规律至今仍不清楚。本文采用分子动力学模拟方法,研究了非公度双壁碳纳米管的层间摩擦特性。总体来说,层间距较小或层间手性角差较小时,层间摩擦力较大。当层间手性角差在10°以上时,层间接触接近非公度接触,层间摩擦力几乎不受层间手性影响;此时在层间平衡位置附近(0.34±0.02 nm),层间摩擦力与层间距之间近似呈线性关系。无论层间手性如何匹配,边界原子所受摩擦力总是大于内部原子所受摩擦力,显示边界效应是纳尺度摩擦中的一个普遍现象。  相似文献   

3.
环壳屈曲的渐近解   总被引:2,自引:0,他引:2  
本文提出分析圆环壳屈曲的一种渐近解析方法,由Sanders非线性平衡方程和壳中面变形协调方程推导出静水外压下环壳的稳定方程,求出了方程的渐近解,理论计算的临界压力值与Fishlowitz的实验结果符合良好,并研究了屈曲前非线性变形对临界载荷的影响。  相似文献   

4.
张薇  王熙 《力学季刊》2013,34(1):96-100
给出了一种求解在任意两管之间严格范德华力相互作用下多壁碳纳米管磁弹性振动频率的解析方法.研究结果表明,在轴向磁场的作用下,严格范德华力相互作用对多壁碳纳米管最高磁弹性振动频率的影响大于对最低振动频率的影响;严格范德华力作用下多壁碳纳米管的最高磁弹性振动频率要高于经典范德华力作用下多壁碳纳米管的最高磁弹性振动频率;严格范德华力对磁弹性振动频率的影响依赖于碳纳米管层间距的变化和管的层数,且随着多壁碳纳米管层数的增加而趋于一个稳定值.本文的研究结果对于碳纳米管作为基本元件在纳米电子元件中的实际应用具有一定的参考价值.  相似文献   

5.
本文导出了具有正交异性复合铺层和偏心加筋的圆柱壳体在轴压、横向压力或它们的任意组合作用下的屈曲问题的近似解,文中提出的方法使壳中不同铺层及偏心加筋引起的弯曲与拉伸间的耦合研究成为可能。以前的研究方法表明由于忽略了弯一拉耦合效应,所予测的屈曲结果是不完全正确的。  相似文献   

6.
双层碳纳米管在扭矩作用下的屈曲   总被引:2,自引:2,他引:0  
韩强 《固体力学学报》2004,25(4):451-454
考虑双层碳纳米管层间范德华力的作用,利用连续介质力学的壳体理论,建立了扭矩作用下碳纳米管屈曲问题的双层弹性壳体模型,给出了相应的临界屈曲扭矩,分析了双层碳纳米管层间范德华力对临界屈曲扭矩的影响。  相似文献   

7.
环壳不仅是U型波纹管的一个组成部分,更是一类重要的结构,在航天、核能和海洋工程中有重要的应用,其屈曲是人们关注的问题之一,其中对半圆环壳的分析还较为少见。本文采用文[7]的有限元法(考虑了屈曲前的弯曲和屈曲时载荷的转动并按线性化特征值问题处理)计算了正Gauss曲率半圆环壳在均匀外压作用下的屈曲,将所得结果与已知的近似解进行了对比、并讨论了其中的差异。本文除了给出临界载荷和子午线的屈曲模态外,还给出了前屈曲弯曲应力分布,以便仔细了解屈曲问题。  相似文献   

8.
张晨利  沈惠申 《力学季刊》2005,26(4):549-554
采用分子动力学方法研究了不同螺旋性的单壁碳纳米管在轴压、扭转和外压分别作用下的变形屈曲行为。针对每种加载形式,给出了宏观形式的内力一变形曲线来反映碳原子间相互作用力的变化与碳管变形量之间的关系。对碳管在这三种不同荷载作用下的失稳特性、微观结构和应变能的变化进行了详细的分析。结合经典弹性理论和本文的模拟结果,得出了单壁碳纳米管的等效壁厚、弹性模量和Poisson比。另外,通过对比不同螺旋性碳管的模拟结果,讨论了螺旋性对碳纳米管力学行为的影响。文中采用的势能函数为Brenner多体势。  相似文献   

9.
基于非线性弹性理论,建立了含脱层正交铺设圆柱壳的后屈曲控制方程,应用Koiter初始后屈曲理论和小参数摄动法,导出了系统的一阶和二阶摄动控制方程,以及相应的边界条件、位移连续条件和力平衡条件,然后逐阶求解.算例中,讨论了不同脱层深度和长度对脱层复合材料圆柱壳屈曲和初始后屈曲特性的影响,并与已有文献进行了比较.  相似文献   

10.
为了研究碳纳米管在冲击扭矩作用下的动力屈曲,采用了连续模型将碳纳米管模拟成半无限长的弹性连续圆柱壳。将冲击扭矩作用下碳纳米管的动力屈曲问题归结为由于扭转应力波传播导致的分叉问题,此分叉问题被化为一个非线性方程组的求解。最后进行了数值分析,讨论了碳纳米管的不同参数对动力屈曲的影响,发现碳纳米管有极强的抗冲击性,临界屈曲剪应力可高达几百吉帕。  相似文献   

11.
The curvature effects of interlayer van der Waals (vdW) forces on axially compressed buckling of a double-walled carbon nanotube (DWNT) of diameter down to 0.7 nm are studied. Unlike most existing models which assume that the interlayer vdW pressure at a point between the inner and outer tubes depends merely on the change of the interlayer spacing at that point, the present model considers the dependence of the interlayer vdW pressure on the change of the curvatures of the inner and outer tubes at that point. A simple expression is derived for the curvature-dependence of the interlayer vdW pressure in which the curvature coefficient is determined. Based on this model, an explicit formula is obtained for the axial buckling strain. It is shown that neglecting the curvature effect alone leads to an under-estimate of the critical buckling strain with a relative error up to −7%, while taking the average radius of two tubes as the representative radius and the curvature effect leads to an over-estimate of the critical buckling strain with a relative error up to 20% when the inner radius downs to 0.35 nm. Therefore, the curvature effects play a significant role in axially compressed buckling problems only for DWNTs of very small radii. In addition, our results show that the effect of the vdW interaction pressure prior to buckling of DWNTs under pure axial stress is small enough and can be negligible whether the vdW interaction curvature effects are neglected or not.  相似文献   

12.
An approximate method is presented in this paper for studying the dynamic buckling of double-walled carbon nanotubes (DWNTs) under step axial load. The analysis is based on the continuum mechanics model, which takes into account the van der Waals interaction between the outer and inner nanotubes. A buckling condition is derived, from which the critical buckling load and associated buckling mode can be determined. As examples, numerical results are worked out for DWNTs under fixed boundary conditions. It is shown that, due to the effect of van der Waals forces, the critical buckling load of a DWNT is enhanced when inserting an inner tube into a single-walled one. The paper indicates that the critical buckling load of DWNTs for dynamic buckling is higher than that for static buckling. The effect of the radii is also examined. In addition, some of the results are compared with the previous ones.  相似文献   

13.
Explicit formulas are derived for the van der Waals (vdW) interaction between any two layers of a multi-walled carbon nanotube (CNT). Based on the derived formulas, an efficient algorithm is established for the buckling analysis of multi-walled CNTs, in which individual tubes are modeled as a continuum cylindrical shell. The explicit expressions are also derived for the buckling of double-walled CNTs. In previous studies by Ru (J. Appl. Phys. 87 (2000b) 7227) and Wang et al. (Int. J. Solids Struct. 40 (2003) 3893), only the vdW interaction between adjacent two layers was considered and the vdW interaction between the other two layers was neglected. The vdW interaction coefficient was treated as a constant that was not dependent on the radii of the tubes. However, the formulas derived herein reveal that the vdW interaction coefficients are dependent on the change of interlayer spacing and the radii of the tubes. With the increase of radii, the coefficients approach constants, and the constants between two adjacent layers are about 10% higher than those reported by Wang et al. (Int. J. Solids. Struct. 40 (2003) 3893). In addition, the numerical results show that the vdW interaction will lead to a higher critical buckling load in multi-walled CNTs. The effect of the tube radius on the critical buckling load of a multi-walled CNT is also examined.  相似文献   

14.
In this paper, we study the peristaltic flows of generalized Oldroyd‐B fluids through the gap between concentric uniform tubes under the assumption of large wavelength and low Reynolds number approximations. The inner tube is rigid and the outer tube has a sinusoidal wave travelling down its wall. Homotopy perturbation and variational iteration methods are used for solution of the problem. The obtained solution is then used to discuss various interesting features of peristalsis. The effects of relaxation time, retardation time and radii of the tubes on pressure rise and friction forces (per wavelength on the inner and outer tubes) are discussed with illustrations. It is found that pressure rise diminishes with increase in relaxation time or the ratio of radii of inner and outer tubes. It increases with increasing retardation time. The effects of both time parameters on friction forces have the opposite behavior to that of pressure rise. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
An elastic double-shell model based on continuum mechanics is presented to study the dynamic torsional buckling of an embedded double-walled carbon nanotube. Based on the presented model, a condition is derived to predict the buckling load of the embedded double-walled nanotube, and the effect of the van der Waals forces to the buckling load is discussed when an inner nanotube is inserted into an embedded outer one. In particular, the paper shows that the buckling load of the embedded double-walled nanotube is always between that of the isolated inner nanotube and that of the embedded outer nanotube for both dynamic and static torsional buckling, due to the effect of the van der Waals forces. This result is different from that obtained by the existing analysis neglecting the difference of the radii for the embedded double-walled nanotube, which indicates that disregarding the difference of the radii of multi-walled nanotubes cannot properly describe the effect of the van der Waals forces between interlayer spacing. In particular, for static torsional buckling of a double-walled nanotube, it is shown that the critical buckling load cannot only be enhanced, but also be reduced when inserting an inner nanotube into an isolated single-walled one. Additionally, it is shown that the elastic medium always increases the critical buckling load of double-walled nanotubes. The critical buckling load of embedded double-walled nanotubes for dynamic torsional buckling is proved to be no less than that for static torsional buckling.  相似文献   

16.
A cylindrical elastic tube under uniform radial external pressure will buckle circumferentially to a non-circular cross-section at a critical pressure. The buckling represents an instability of the inner or outer edge of the tube. This is a common phenomenon in biological tissues, where it is referred to as mucosal folding. Here, we investigate this buckling instability in a growing elastic tube. A change in thickness due to growth can have a dramatic impact on circumferential buckling, both in the critical pressure and the buckling pattern. We consider both single- and bi-layer tubes and multiple boundary conditions. We highlight the competition between geometric effects, i.e. the change in tube dimensions, and mechanical effects, i.e. the effect of residual stress, due to differential growth. This competition can lead to non-intuitive results, such as a tube growing to be thinner and yet buckle at a higher pressure.  相似文献   

17.
Buckling and postbuckling analysis is presented for a double-walled carbon nanotube subjected to combined axial and radial loads in thermal environments. The analysis is based on a continuum mechanics model in which each tube of a double-walled carbon nanotube is described as an individual orthotropic shell with presence of van der Waals interaction forces and the interlayer friction is negligible between the inner and outer tubes. The governing equations are based on higher order shear deformation shell theory with a von Kármán-Donnell-type of kinematic nonlinearity and include thermal effects. Temperature-dependent material properties, which come from molecular dynamics simulations, and initial point defect, which is simulated as a dimple on the tube wall, are both taken into account. A singular perturbation technique is employed to determine the interactive buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect, double-walled carbon nanotubes subjected to combined axial and radial mechanical loads under different sets of thermal environments. The results reveal that temperature change only has a small effect on the postbuckling behavior of the double-walled carbon nanotube. The axially-loaded double-walled carbon nanotube subjected to radial pressure has an unstable postbuckling path, and the structure is imperfection–sensitive. In contrast, the pressure-loaded double-walled carbon nanotube subjected to axial compression has a very weak “snap-through” postbuckling path, and the structure is virtually imperfection–insensitive.  相似文献   

18.
The present paper focuses on the structural stability of long uniformly pressurized thin elastic tubular shells subjected to in-plane bending. Using a special-purpose non-linear finite element technique, bifurcation on the pre-buckling ovalization equilibrium path is detected, and the post-buckling path is traced. Furthermore, the influence of pressure (internal and/or external) as well as the effects of radius-to-thickness ratio, initial curvature and initial ovality on the bifurcation moment, curvature and the corresponding wavelength, are examined. The local character of buckling in the circumferential direction is also demonstrated, especially for thin-walled tubes. This observation motivates the development of a simplified analytical formulation for tube bifurcation, which considers the presence of pressure, initial curvature and ovality, and results in closed-form expressions of very good accuracy, for tubes with relatively small initial curvature. Finally, aspects of tube bifurcation are illustrated using a simple mechanical model, which considers the ovalized pre-buckling state and the effects of pressure.  相似文献   

19.
This is a modest contribution on higher-order continuum theory for predicting size effects in small-scale objects. It relates to a preceding article of the journal by the same authors(AMSS, 2013, 26: 9-20) which considered the longitudinal dynamical analysis of a gradient elastic fiber but, in addition to an internal length, an internal time parameter is also introduced to model delay/acceleration effects associated with the underlying microstructure. In particular, the free transverse vibration of a double-walled carbon nanotube(DWNT) is studied by employing gradient elasticity with internal inertia. The inner and outer carbon nanotubes are modeled as two individual elastic beams interacting with each other through van der Waals(vdW) forces. General explicit expressions are derived for the natural frequencies and the associated inner-to-outer tube amplitude ratios for the case of simply supported DWNTs. The effects of internal length(or scale)and internal time(or inertia) on the vibration behavior are evaluated. The results indicate that the internal length and time parameters of the adopted strain gradient-internal inertia generalized elasticity model have little influence on the lower order coaxial and noncoaxial vibration modes,but a significant one on the higher order modes.  相似文献   

20.
An elastic double-shell model is presented for the buckling and postbuckling of a double-walled carbon nanotube subjected to axial compression. The analysis is based on a continuum mechanics model in which each tube of a double-walled carbon nanotube is described as an individual elastic shell and the interlayer friction is negligible between the inner and outer tubes. The governing equations are based on the Karman–Donnell-type nonlinear differential equations. The van der Waals interaction between the inner and outer nanotubes and the nonlinear prebuckling deformations of the shell are both taken into account. A boundary layer theory of shell buckling is extended to the case of double-walled carbon nanotubes under axial compression. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. Numerical results reveal that the single-walled carbon nanotube and the double-walled carbon nanotube both have an unstable postbuckling behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号