首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
[reaction: see text] Triptycene-derived compounds have been prepared to serve as conformational equilibrium reporters for direct measurements of arene-arene interactions in the parallel-displaced orientation. A series of such compounds bearing arenes with different substituents were synthesized, and the ratios of the syn and anti conformers were determined by variable-temperature NMR spectroscopy. The syn conformer allows attached arenes to interact with each other while the anti conformer does not. The free energies derived from the syn/anti ratios in chloroform range from slightly positive (0.2 kcal/mol) to considerably negative (-0.98 kcal mol) values. The interactions between the arenes bearing electron-donating groups (EDG) are either negligible or slightly repulsive, while the interactions between arenes bearing electron-withdrawing groups (EWG) are attractive. Intermediate free energy values are obtained for those compounds bearing arenes with one EDG and one EWG.  相似文献   

2.
Reactions of isocyanates XNCO (e.g., X = p-An, Ph, i-Pr) with (MeO)2P(=O)CH2CO2R [R = Me, CF3CH2, (CF3)2CH] gave 15 formal "amides" (MeO)2P(=O)CH(CO2R)CONHX (6/7), and with (CF3CH2O)2P(=O)CH2CO2R [R = Me, CF3CH2] they gave eight analogous amide/enols 17/18. X-ray crystallography of two 6/7, R = (CF3)2CH systems revealed Z-enols of amides structures (MeO)2P(=O)C(CO2CH(CF3)2)=C(OH)NHX 7 where the OH is cis and hydrogen bonded to the O=P(OMe)2 group. The solid phosphonates with R = Me, CF3CH2 have the amide 6 structure. The structures in solution were investigated by 1H, 13C, 19F, and 31P NMR spectra. They depend strongly on the substituent R and the solvent and slightly on the N-substituent X. All systems displayed signals for the amide and the E- and Z-isomers. The low-field two delta(OH) and two delta(NH) values served as a probe for the stereochemistry of the enols. The lower field delta(OH) is not always that for the more abundant enol. The % enol, presented as K(enol), was determined by 1H, 19F, and 31P NMR spectra, increases according to the order for R, Me < CF3CH2 < (CF3)2CH, and decreases according to the order of solvents, CCl4 > CDCl3 approximately THF-d8 > CD3CN >DMSO-d6. In DMSO-d6, the product is mostly only the amide, but a few enols with fluorinated ester groups were observed. The Z-isomers are more stable for all the enols 7 with E/Z ratios of 0.31-0.75, 0.15-0.33, and 0.047-0.16 when R = Me, CF3CH2, and (CF3)2CH, respectively, and for compounds 18, R = Me, whereas the E-isomers are more stable than the Z-isomers. Comparison with systems where the O=P(OMe)2 is replaced by a CO2R shows mostly higher K(enol) values for the O=P(OMe)2-substituted systems. A linear correlation exists between delta(OH)[Z-enols] activated by two ester groups and delta(OH)[E-enols] activated by phosphonate and ester groups. Compounds (MeO)2P(=O)CH(CN)CONHX show 相似文献   

3.
Hydrolyses of phosphorus halides, (RO)(2)POX where R = H or Me and X = F or Cl, in the gas phase and in the reaction field have been investigated theoretically with ab initio and the density functional theory (DFT). The free energy of activation in the reaction field was also estimated using the Onsager method with a correction of entropy change and basis set superposition error (BSSE). The reaction of (MeO)(2)POF proceeds through a path with bifunctional catalysis regardless of the medium, but the reaction of (MeO)(2)POCl proceeds through bifunctional and general base catalysis in the gas phase and in water, respectively. The estimated free energy barrier of 23 kcal/mol for the hydrolysis of (MeO)(2)POF is in good agreement with the experimental values of 24 kcal/mol, and relative barrier of 3 kcal/mol to the (MeO)(2)POCl is also in good agreement with the experimental values of 5 kcal/mol of diisopropyl phosphorus halides ((Pr(i)O)(2)POX, X = F and Cl).  相似文献   

4.
The stacking interactions between an aromatic ring and a pyridine or a pyrimidine ring are studied by using a series of triptycene-derived scaffolds. The indicative ratios of the syn and anti conformers were determined by variable-temperature NMR spectroscopy. The syn conformer aligns the attached aromatic ring and the heterocycle in a parallel-displaced orientation while the anti conformer sets the two rings apart from each other. Comparing to the corresponding control compounds where a benzene ring is in the position of the heterocycle, higher attractive interactions are observed as indicated by the higher syn/anti ratios. In general, the attractive interactions are much less sensitive to the substituent effects than the corresponding nonheterocycles. The greatest attractive interactions were observed between a pyrimidine ring and a N,N-dimethylaminobenzene, consistent with a predominant donor-acceptor interaction. The interactions between a pyridine ring and a substituted benzene ring show that the pyridine is comparable to that of a NO2- or a CN-substituted benzene ring except for the unpredictable substituent effects.  相似文献   

5.
Equilibria between the Z (tau1= 0 degrees) and E (tau1= 180 degrees) conformers of p-substituted phenyl acetates 4 and trifluoroacetates 5 (X = OMe, Me, H, Cl, CN, NO2) were studied by ab initio calculations at the HF/6-31G* and MP2/6-31G* levels of theory. The preference for the Z conformer, DeltaE(HF), was calculated to be 5.36 kcal mol(-1) and 7.50 kcal mol(-1) for phenyl acetate and phenyl trifluoroacetate (i.e., with X = H), respectively. The increasing electron-withdrawing ability of the phenyl substituent X increases the preference of the Z conformer. An excellent correlation with a negative slope was observed for both series between DeltaE of the E-Z equilibrium and the Hammett sigma constant. By using an appropriate isodesmic reaction, it was shown that electron-withdrawing substituents decrease the stability of both conformers, but the effect is higher with the E conformer. Electron-withdrawing phenyl substituents decrease the delocalization of the lone pair of the ether oxygen to the C=O antibonding orbital (nO--> pi*C=O) in both the E and Z forms and in both series studied; this effect is higher in the E conformer than in the Z conformer. The nO --> pi*C=O electron donation has a minimum value with tau1= 90 degrees and a maximum value with tau1= 0 degrees (the Z conformer), the value with tau1= 180 degrees (the E conformer) being between these two values, obviously due to steric hindrance. The effects of the phenyl substituents on the reactivity of the esters studied are discussed in terms of molecular orbital interactions. ED/EW substituents adjust the availability of the pi*C=O antibonding orbital to interact with the lone pair orbital of the attacking nucleophile and therefore affect the reactivity: EW substituents increase and ED substituents decrease it. Excellent correlations were observed between the rate coefficients of nucleophilic acyl substitutions and pi*C=O occupancies of the ester series 4 and 5.  相似文献   

6.
The protonation of [Ni(SC(6)H(4)R-4)(triphos)](+) (triphos = PhP[CH(2)CH(2)PPh(2)](2); R = NO(2), Cl, H, Me, or MeO) by [lutH](+) (lut = 2,6-dimethylpyridine) to form [Ni(S(H)C(6)H(4)R-4)(triphos)](2+) is an equilibrium reaction in MeCN. Kinetic studies, using stopped-flow spectrophotometry, reveal that the reactions occur by a two-step mechanism. Initially, [lutH](+) rapidly binds to the complex (K(2)(R)) in an interaction which probably involves hydrogen-bonding of the acid to the sulfur. Subsequent intramolecular proton transfer from [lutH](+) to sulfur (k(3)(R)) is slow because of both electronic and steric factors. The X-ray crystal structures of [Ni(SC(6)H(4)R-4)(triphos)](+) (R = NO(2), H, Me, or MeO) show that all are best described as square-planar complexes, with the phenyl substituents of the triphos ligand presenting an appreciable barrier to the approach of the sterically demanding [lutH](+) to the sulfur. The kinetic characteristics of the intramolecular proton transfer from [lutH](+) to sulfur have been investigated. The rate of intramolecular proton transfer exhibits a nonlinear dependence on Hammett sigma(+), with both electron-releasing and electron-withdrawing 4-R-substituents on the coordinated thiolate facilitating the rate of proton transfer (NO(2) > Cl > H > Me < MeO). The rate constants for intramolecular proton transfer correlate well with the calculated electron density of the sulfur. The temperature dependence of the rate of the intramolecular proton transfer reactions shows that deltaH() is small but increases as the 4-R-substituent becomes more electron-withdrawing [deltaH = 4.1 (MeO), 6.9 (Me), 11.4 kcal mol(-)(1) (NO(2))], while DeltaS() becomes progressively less negative [deltaS = -50.1 (MeO), -41.2 (Me), -16.4 (NO(2)) cal K(-)(1) mol(-)(1)]. Studies with [lutD](+) show that the rate of intramolecular proton transfer varies with the 4-R-substituent [(k(3)(NO)2)(H)/(k(3)(NO)2)(D) = 0.39; (k(3)(Cl))(H)/(k(3)(Cl))(D) = 0.88; (k(3)(Me))(H)/(k(3)(Me))(D) = 1.3; (k(3)(MeO))(H)/(k(3)(MeO))(D) = 1.2].  相似文献   

7.
The kinetics of the equilibrium reaction between [Ni(SC(6)H(4)R-4)(2)(dppe)] (R= MeO, Me, H, Cl, or NO(2); dppe = Ph(2)PCH(2)CH(2)PPh(2)) and mixtures of [lutH](+) and lut (lut = 2,6-dimethylpyridine) in MeCN to form [Ni(SHC(6)H(4)R-4)(SC(6)H(4)R-4)(dppe)](+) have been studied using stopped-flow spectrophotometry. The kinetics for the reactions with R = MeO, Me, H, or Cl are consistent with a single-step equilibrium reaction. Investigation of the temperature dependence of the reactions shows that DeltaG = 13.6 +/- 0.3 kcal mol(-)(1) for all the derivatives but the values of DeltaH and DeltaS vary with R (R = MeO, DeltaH() = 8.5 kcal mol(-)(1), DeltaS = -16 cal K(-)(1) mol(-)(1); R = Me, DeltaH() = 10.8 kcal mol(-)(1), DeltaS = -9.5 cal K(-)(1) mol(-)(1); R = Cl, DeltaH = 23.7 kcal mol(-)(1), DeltaS = +33 cal K(-)(1) mol(-)(1)). With [Ni(SC(6)H(4)NO(2)-4)(2)(dppe)] a more complicated rate law is observed consistent with a mechanism in which initial hydrogen-bonding of [lutH](+) to the complex precedes intramolecular proton transfer. It seems likely that all the derivatives operate by this mechanism, but only with R = NO(2) (the most electron-withdrawing substituent) does the intramolecular proton transfer step become sufficiently slow to result in the change in kinetics. Studies with [lutD](+) show that the rates of proton transfer to [Ni(SC(6)H(4)R-4)(2)(dppe)] (R = Me or Cl) are associated with negligible kinetic isotope effect. The possible reasons for this are discussed. The rates of proton transfer to [Ni(SC(6)H(4)R-4)(2)(dppe)] vary with the 4-R-substituent, and the Hammett plot is markedly nonlinear. This unusual behavior is attributable to the electronic influence of R which affects the electron density at the sulfur.  相似文献   

8.
The heteroatom-substituted imido complexes [(LAu)3(mu-NX)]+ (X = NR2, R = Ph, Me, Bz; X = OH, Cl; L = a phosphine) have been prepared from the reactions of NH2X with [(LAu)3(mu-O)]+. Thermally unstable [(LAu)3(mu-NNMe2)]+ (L = P(p-XC6H4)3, X = H, F, Me, Cl, MeO) decompose to the gold cluster [LAu]6(2+) and tetramethyltetrazene Me2NN=NNMe2. The decomposition is first-order overall with a rate constant that increases with increasing pKa of the phosphine ligand. Activation parameters for the decomposition are deltaH(not equal to) = 99(4) kJ/mol and deltaS(not equal to) = 18.5(5) J/K.mol for L = PPh3 and deltaH(not equal to) = 78(3) kJ/mol and deltaS(not equal to) = -47(2) J/K.mol for L = P(p-MeOC6H4)3. The decomposition of analogous [(LAu)3(mu-NNBz2)]+ produces bibenzyl, indicative of the release of free amino nitrene Bz2NN.  相似文献   

9.
The crystal structure of 1,3,5-tris(4-methylnaphth-1-yl)benzene, 1, shows one naphthyl substituent in an anti relationship to the other two. On the other hand, low temperature (-70 degrees C) (1)H NMR spectra in solution show the presence of a second rotational conformer (rotamer) having all the three naphthyl substituents in a syn relationship. The interconversion barrier between the anti (77%) and syn (23%) rotamers of 1 was determined by line shape simulation of the temperature-dependent NMR spectra (Delta G(++) = 12.1 kcal mol(-1)). In the analogous disubstituted meta and paraderivatives, that is, 1,3- and 1,4-bis(4-methylnaphth-1-yl)benzene (2 and 3, respectively), the presence of both the anti and syn rotamers was also detected by low-temperature NMR spectroscopy. In the latter compounds, the proportions of the anti and syn forms are nearly equal, and the corresponding anti to syn interconversion barriers were found to be lower (11.4 and 11.1(5) kcal mol(-1), respectively) than those of the trisubstituted derivative 1.  相似文献   

10.
The structures of anilido cyano(fluoroalkoxycarbonyl)methanes ArNHCOCH(CN)CO(2)R, where R = CH(2)CF(3) or CH(CF(3))(2), Ar = p-XC(6)H(4), and X = MeO, Me, H, or Br, were investigated. In the solid state, all exist as the enols ArNHC(OH)=C(CN)CO(2)R 7 (R = CH(2)CF(3)) and 9 (R = CH(CF(3))(2)) with cis arrangement of the hydrogen-bonded ROC=O.HO moiety and a long C1=C2 bond. The product composition in solution is solvent dependent. In CDCl(3) solution, only a single enol is observed, whereas in THF-d(8) and CD(3)CN, two enols (E and Z) are the major products, and the amide is the minor product or not observed at all (K(Enol) 1.04-9 (CD(3)CN, 298 K) and 3 to >/=100 (THF, 300 K)). The percentage of the amide and the Z-enol increase upon an increase in temperature. In all solvents, the percent enol is higher for 9 than for 7. In CD(3)CN, more enol is observed when the aryl group is more electron-donating. The spectra in DMSO-d(6) and DMF-d(7) indicate the presence of mostly a single species, whose spectra do not change on addition of a base and is ascribed to the anion of the ionized carbon acid. Comparison with systems where the CN is replaced by a CO(2)R group (R = CH(2)CF(3), CH(CF(3))(2)) shows a higher percentage of enol for the CN-substituted system. Intramolecular (to CO(2)R) and intermolecular hydrogen bonds determine, to a significant extent, the stability of the enols, their Z/E ratios (e.g., Z/E (THF, 240 K) = 3.2-4.0 (7) and 0.9-1.3 (9)), and their delta(OH) in the (1)H spectra. The interconversion of Z- and E-enol by rotation around the C=C bond was studied by DNMR, and DeltaG() values of >/=15.3 and 14.1 +/- 0.4 kcal/mol for Z-7 and Z-9 were determined. Features of the NMR spectra of the enols and their anions are discussed.  相似文献   

11.
Interactions between two aromatic rings with various substituents in a near-sandwich configuration have been quantitatively studied by using the triptycene derived molecular models. This model system allows a stacking arrangement of two arenes to assume a near-perfect face-to-face configuration in its ground state conformation. Comparing to our previous study of the parallel displaced configuration, repulsive interactions are predominant for most arenes currently studied. However, if one arene is strongly electron deficient (Ar2=pentafluorobenzoate), attractive interactions were observed regardless of the character of the other arene (Ar1). For stacking interactions between Me2NC6H4 and C6F5CO groups, a DeltaH of -1.84+/-0.2 kcal/mol and a DeltaS of -2.9+/-0.8 cal/(mol.K) were determined. The general trend in the attractive stacking interaction toward a pentafluorobenzoate is Me2NC6H4>Me3C6H2>Me2C6H3>MeC6H4>MeOC6H4>C6H5>O2NC6H4. The observed trend is consistent with a donor-acceptor relationship and the acceptor is a C6F5CO group.  相似文献   

12.
The addition of alkynes HC=CR to Mo(NH)(CH(2))(OR')(2) (R = H, Me, Ph; R' = CH(3), CF(3)) has been studied with both ab initio molecular orbital and density functional calculations. Geometry optimizations were carried out with the HF/3-21G, HF/HW3, and B3LYP/HW3 methods. The transition structures for these addition reactions are in distorted trigonal bipyramidal geometries, similar to those of alkene additions. The calculated activation enthalpy for HC=CH addition to Mo(NH)(CH(2))(OR')(2) is about 10.3 kcal/mol for R' = CH(3) and about 2.3 kcal/mol for R' = CF(3), indicating a significant preference for acetylene addition to Mo(NH)(CH(2))(OCF(3))(2) over Mo(NH)(CH(2))(OCH(3))(2). These barriers are higher than those of the corresponding ethylene addition by about 2-4 kcal/mol, even though the reaction of acetylene is much more exothermic. The alpha-addition of HC=CR (R = Me, Ph) is found to be considerably more favorable than the beta-addition to Mo(NH)(CH(2))(OR')(2). Interestingly, the alpha-addition has a lower activation energy, while the beta-addition has a higher activation energy, compared to that of the parent acetylene addition. Thus, alpha-addition is intrinsically favored over beta-addition by over 4 kcal/mol. This preference is reduced by solvent effect. All these can be explained by a destabilizing interaction between the nonreacting pi-orbital of alkyne and one of the lone pairs on the imido nitrogen. The steric effect of the bulky ligands in the real catalysts is also investigated qualitatively by the PM3 method. These studies give results in good accord with the experimentally observed regioselectivity.  相似文献   

13.
[structure: see text] The synthesis and characterization of a series of low-valent organoselenium compounds derived from 1-bromo-4-tert-butyl-2,6-di(formyl)benzene (22) is described. The synthesis of diselenide 25 was achieved by the lithiation route whereas bis(4-tert-butyl-2,6-di(formyl)phenyl) diselenide (26) was synthesized by treating 22 with disodium diselenide. A series of monoselenides (27, 28, and 29) was obtained by facile nucleophilic substitution of bromine in 22, using the corresponding selenolates as nucleophiles. The halogenation reactions of bis(4-tert-butyl-2,6-di(formyl)phenyl) diselenide (26) did not afford the corresponding selenenyl halides but resulted in the isolation of an unexpected cyclic selenenate ester 34 as a product. The selenide 32 was synthesized by the treatment of dimethoxymethyl diselenide with trilithiated 2-bromo-5-tert-butyl-N,N'-di(phenyl)isophthalamide. The existence of potential Se...O intramolecular nonbonding interactions was examined by IR, (1)H, and (77)Se NMR spectroscopy, X-ray crystallography, and computational studies. The X-ray crystal structures of 26 and 27, having two ortho formyl groups, reveal the absence of any Se...O interactions. However, the Se...O interactions were observed in the selenenate ester 34 where one of the formyl groups has been utilized for the selenenate ring formation. The crystal structures of 26 and 27 exhibited intermolecular short-range C-H...Se interactions (hydrogen bonding). Although there are four heteroatoms in carbamoyl moieties ortho to selenium capable of forming a five-membered ring on intramolecular coordination, no such intramolecular Se...X (X = N, O) interaction was observed in the crystal structure of 32. The density functional theory calculations at the B3LYP/6-31G* level predicted that for all the diformyl systems (47a-c, 48a-c), the anti,anti conformer (when both formyl oxygen atoms point away from the selenium) is more stable. This preference was found to be reversed in the monoformyl-substituted systems (50a,b, 51a,b), where the syn conformer (when formyl oxygen is near the selenium) is energetically more favorable than the anti conformer.  相似文献   

14.
The role of negative hyperconjugation and anomeric and polar effects in stabilizing the XZHCbetaCalphaYY'- intermediates in SNV reactions was studied computationally by DFT methods. Destabilizing steric effects are also discussed. The following ions were studied: X = CH3O, CH3S, CF3CH2O and Y = Y' = Z = H (7b-7d), Y = Y' = H, Z = CH3O, CH3S, CF3CH2O (7e-7i), YY' = Meldrum's acid-like moiety (Mu), Z = H, (8b-8d), and YY' = Mu, Z = CH3O, CH3S, CF3CH2O (8e-8i). The electron-withdrawing Mu substituent at Calpha stabilizes considerably the intermediates and allows their accumulation. The hyperconjugation ability (HCA) (i.e., the stabilization due to 2p(Calpha) --> sigma*(Cbeta-X) interaction) in 8b-8d follows the order (for X, kcal/mol) CH3S (8.5) > CF3CH2O (7.6) approximately CH3O (7.5). The HCA in 8b-8d is significantly smaller than that in 7b-7d due to charge delocalization in Mu in the former. The calculated solvent (1:1 DMSO/H2O) effect is small. The stability of disubstituted ions (7e-7i and 8e-8i) is larger than that of monosubstituted ions due to additional stabilization by negative hyperconjugation and an anomeric effect. However, steric repulsion between the geminal Cbeta substituents destabilizes these ions. The steric effects are larger when one or both substituents are CH3S. The anomeric stabilization (the energy difference between the anti,anti and gauche,gauche conformers) in the disubstituted anions contributes only a small fraction to their total stabilization. Its order (for the following X/Z pairs, kcal/mol) is CF3CH2O/CH3S (8i, 4.9) > CF3CH2O/CH3O (8h, 3.9) > CH3O/CH3S (8g, 3.3) > CH3S/CH3S (8f, 2.9) > CH3O/CH3O (8e, 2.4). Significantly larger anomeric effects of ca. 8-9 kcal/mol are calculated for the corresponding conjugate acids.  相似文献   

15.
The conformational properties and the geometric structure of perfluoromethyl fluorocarbonyl peroxide, CF(3)OOC(O)F, have been studied by matrix IR spectroscopy, gas electron diffraction, and quantum chemical calculations (HF, B3LYP, and MP2 methods with 6-311G* basis sets). Matrix IR spectra imply a mixture of syn and anti conformers (orientation of the C=O bond relative to the O-O bond) with DeltaH degrees = H(anti) degrees - H(syn) degrees = 2.16(22) kcal/mol. At room temperature, the contribution of the anti rotamer is about 3.0%. The O-O bond (1.422(15) A) is within the experimental uncertainties equal to those in related symmetrically substituted peroxides CF(3)OOCF(3) and FC(O)OOC(O)F (1.419(20) and 1.419(9) A, respectively), and the dihedral angle delta(COOC) (111(5) degrees ) is intermediate between the values in these two compounds (123(4) degrees and 83.5(14) degrees, respectively).  相似文献   

16.
Three families of heterobimetallic compounds were obtained by reaction of [Mo(CO)3(CH3CN)2(Cl)(SnRCl2)] (R = Ph, Me) with P(4-XC6H4)3 (X = Cl, F, H, Me, MeO). The type of compound obtained dependent on the solvent and concentration of the starting compound. So, [Mo(CO)2(CH3COCH3)2(PPh3)(Cl)(SnRCl2)]·nCH3COCH3 (R = Ph, n = 0.5; R = Me, n = 1) (type I) and [Mo(CO)3{P(4-XC6H4)3}(μ-Cl)(SnRCl2)]2 (R = Ph, X = Cl, F, H, Me, MeO; R = Me, X = Cl, F) (type II) were isolated from acetone solution in ca 0.05 M and 0.1 M concentrations, respectively. However, [Mo(CO)3(CH3CN) {P(4-XC6H4)3}(Cl)(SnRCl2)] (R = Ph, X = H; R = Me, X = Cl, F, H) (type III) were obtained from dichloromethane solution independently of the concentration used. All new complexes showed a seven-coordinate environment at molybdenum, containing Mo---Cl and Mo---Sn bonds. Mössbauer spectra indicated a four-coordination at tin for type III complexes.  相似文献   

17.
The preparation of a large series of new N-silyl-P-alkylphosphoranimines and their (silylamino)phosphine precursors is reported. Oxidative bromination of the P-functional (silylamino)phosphines, (Me(3)Si)(2)NP(R)X [R = n-Pr, n-Bu, i-Pr, t-Bu; X = Br, OR' (R' = CH(2)CF(3), Ph)], occurred smoothly at 0 degrees C and afforded the desired P-bromophosphoranimines, Me(3)SiN=P(R)(X)Br. Nucleophilic substitution reactions of the P-dibromo members of this series with LiOR' gave the corresponding P-trifluoroethoxy- and P-phenoxyphosphoranimines, Me(3)SiN=P(R)(OR')(2) (R' = CH(2)CF(3), Ph). All of these N-silylphosphoranimines, which are potential precursors to new cyclic and/or polymeric phosphazenes, were obtained as thermally stable, distillable liquids and were characterized by NMR ((1)H, (13)C, and (31)P) spectroscopy and elemental analysis.  相似文献   

18.
田宪儒 《有机化学》1993,13(2):189-191
用3-苄基-4-苯基斯德酮和4-甲酰基-3-芳基斯德酮的硝化研究了在斯德酮环4-取代的去定域化效应和斯德酮环的电子效应的二重性。  相似文献   

19.
Highly enantioselective Michael addition of silyl nitronates to alpha,beta-unsaturated aldehydes has been accomplished by the utilization of designer N-spiro C2-symmetric chiral quaternary ammonium bifluoride 1 as an efficient catalyst, providing direct access to both optically active gamma-nitro aldehydes, a very useful precursor to various complex organic molecules including aminocarbonyls, and their enol silyl ethers, a Mukaiyama donor of potential synthetic utility for further selective transformations. For instance, the reaction of trimethylsilyl nitronate 2 (R1 = Me) with trans-cinnamaldehyde (R2 = Ph, R3 = H) in toluene in the presence of (R,R)-1 (2 mol %) proceeded smoothly at -78 degrees C to give the desired enol silyl ether 3 (R1 = Me, R2 = Ph, R3 = H) in 90% isolated yield (anti/syn = 83:17) with 97% ee (anti isomer), and simple treatment of 3 thus obtained with 1 N HCl in THF at 0 degrees C afforded the corresponding gamma-nitro aldehyde 4 quantitatively without loss of diastereo- and enantioselectivity.  相似文献   

20.
Cisplatin forms the cis-Pt(NH3)2(d(GpG)) cross-link with DNA. We have recently created novel d(GpG) conformations by using "retro models" (complexes having bulky carrier ligands designed to slow d(GpG) dynamic motion). Our results define four conformer classes: HH1, HH2, delta HT1, and delta HT2, with a head-to-head or head-to-tail base orientation and a phosphodiester backbone with a normal (1) or opposite (2) propagation direction. Moreover, each G residue can be syn or anti, and the base canting can be left-handed (L) or right-handed (R). Thus, 32 variants of cis-Pt(NH3)2(d(GpG)) are conceivable, but the adduct is too dynamic to study. Thus far, by using retro models, we have obtained evidence for five variants with d(GpG) but only four with GpG. We therefore selected Me2DAPPt(GpG) complexes for study by 1H and 31P NMR spectroscopy, CD spectroscopy, and molecular mechanics and dynamics (MMD) calculations. Coordinated Me2DAP (N,N'-dimethyl-2,4-diaminopentane) has N, C, C, N chiral centers designated, for example, as R,R,R,R. This ligand has greater flexibility and more readily inverted N centers than ligands used previously in GpG retro models. One goal was to determine whether the GpG ligand can control the configuration of a carrier ligand. (R,R,R,R)-Me2DAPPt(GpG) forms the anti, anti HH1 R variant almost exclusively. Equal populations of the two possible linkage isomers of (S,R,R,R)-Me2DAPPt(GpG) are formed, both favoring the anti, anti HH1 R, variant; however, the isomer with the 5'-G cis to the S nitrogen has sharper signals, suggesting that interligand interactions are more favorable. Indeed, this linkage isomer was the major product of isomerization when (R,R,R,R)-Me2DAPPt(GpG) was kept at pH approximately 9.5 to allow N center equilibration. Steric clashes between the Me2DAP C-Me groups and the G O6 atoms found by MMD calculations appear to disfavor the HH1 conformer of (S,S,S,S)-Me2DAPPt(GpG) and (S,S,S,R)-Me2DAPPt(GpG) complexes. These two complexes have a significant population of the anti, syn delta HT1 conformer, as indicated by broad 1H NMR signals and by 31P NMR and CD data. Equilibration of (S,S,S,R)-Me2DAPPt(GpG) at pH 9.5 leads to a mixture of (S,S,S,S)-Me2DAPPt(GpG) and at least one isomer of (S,S,S,R)-Me2DAPPt(GpG). Thus, second-sphere communication (hydrogen bonding and steric interligand interactions) influences both GpG conformation and Me2DAP configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号