首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
彭富福  王朝正  林裕章 《电化学》2005,11(4):369-376
本文研究表面沉积2 mg/cm2氯化钠的2205双相不锈钢(2205 DSS)在500 vppm NaC(l g)流动气氛加热炉内550~850℃下之高温腐蚀.结果显示,2205 DSS之高温腐蚀动力学遵守)物线定律,腐蚀反应速率随温度的上升而加速.高温腐蚀后生成的腐蚀皮膜结构由外而内依次为Fe2O3、Fe3O4、Cr2O3及FeCr2O4,不同温度下腐蚀生成的皮膜结构并无明显相异,唯850℃之试片于氧化皮膜脱落后,从其表层较容易检测到S iO2及N iO.在双相结构腐蚀顺序实验中,对表面沉积2 mg/cm2氯化钠的试片,其腐蚀顺序与α、γ相无关,为全面性的腐蚀.但于500 vppm NaC l(g)的流动气氛下,虽无法分辨α、γ相的腐蚀顺序,但可发现γ相较α相有较快速腐蚀的现象.  相似文献   

2.
430不锈钢热浸镀铝(硅)之铝化层成长研究   总被引:1,自引:0,他引:1  
陈鹏交  王朝正  林裕章  金萱 《电化学》2005,11(3):271-276
使用430不锈钢于680至800℃下作熔融铝硅合金热浸处理,研究热浸温度及热浸时间对铝硅合金化层成长的影响及铝化层之成长动力学.结果表明,430不锈钢在680~800℃经热浸16~289 s后,表面镀层与铝化层之生成厚度随热浸时间及热浸温度而增加,铝化层之成长动力学符合抛物线定律,并因相互扩散而形成FeA l3及Fe2A l5相,金相截面观察显示,680℃热浸处理的合金化层界面平坦,而在800℃下的即趋于不规则.  相似文献   

3.
本文以Al和10%体积比Al2O3的混合粉末为原料,使用便携式低压冷喷涂设备,在Q235碳钢基体上喷涂了Al涂层. 测试涂层自腐蚀电位及动电位极化曲线,结合扫描电镜观察涂层表面及截面微观形貌,研究了低压冷喷涂Al涂层在海水中电化学腐蚀行为,并与高压冷喷涂和热喷涂铝涂层的耐蚀性比较. 结果表明,低压冷喷涂铝涂层结构较为致密,其耐蚀性比高压冷喷涂铝涂层的略低,而明显优于热喷涂铝涂层.  相似文献   

4.
首先采用50%草酸溶液对蜂窝状堇青石进行沸煮处理,研究酸蚀处理对其组成和孔结构的影响.采用不同方法在其表面涂敷氧化铝涂层,考察酸蚀预处理对不同涂敷过程的影响.然后,对氧化铝涂层分别进行表征和比较.结果表明,(1)随着沸煮时间逐渐延长,蜂窝状堇青石腐蚀程度加剧,内部微孔增多,进而形成介孔,比表面积和平均孔径逐渐增大.(2)除硝酸盐热分解法外,采用传统浸渍法、原位涂敷 浸渍法和铝浆洗涂法涂敷时,将堇青石进行酸蚀预处理均不利于后续A l2O3涂层的涂敷.(3)采用传统浸渍法和铝浆洗涂法,酸蚀预处理都只是增大其涂层的比孔容积.而采用原位涂敷 浸渍法,预处理还会明显影响涂层的内部孔结构.其原因可能是预处理将影响A l2O3溶胶的原位形成过程,从而影响涂层的孔结构.  相似文献   

5.
通过超支化聚酯(HPE)末端的羟基与戊二醛(GA)之间的羟醛缩合反应,采用简单的浸涂-交联方法,制备了一种以聚砜超滤膜为支撑层,交联的HPE为活性分离层的复合纳滤膜.采用衰减全反射红外光谱(ATR-FTIR)、接触角测定、扫描电子显微镜(SEM)对纳滤膜的表面化学组成、亲水性和膜形貌进行了表征.考察了HPE溶液浓度、GA溶液浓度对膜分离和渗透性能的影响,优化的HPE和GA溶液浓度分别为9.8 g/L和7.4 g/L,此时在0.4 MPa下膜的水通量达69.6 L/(m2.h),对Na2SO4脱除率为93.2%,表现出低操作压力、高通量、高脱盐率的优异性能.纳滤膜对无机盐的截留顺序为Na2SO4>NaCl>MgSO4>MgCl2,呈现明显的荷负电特征.  相似文献   

6.
采用直流磁控溅射法在1Cr18Ni9Ti奥氏体不锈钢表面制备Al Y涂层,并对部分涂层进行600℃真空扩散退火和预氧化处理,研究了不锈钢和具有不同状态Al Y涂层的不锈钢的热腐蚀行为。结果表明:不锈钢以及涂层试样的腐蚀动力学近似服从抛物线规律;24 h腐蚀后,不锈钢试样增重最大,涂层试样增重比不锈钢试样小,三种涂层试样中,增重从大到小依次是:未处理的涂层试样、真空扩散退火试样及预氧化试样。不锈钢在Na2SO4盐膜下腐蚀24 h后,形成了以Cr2O3和Ni O为主,及少量Fe2O3的氧化膜;在不锈钢表面溅射Al Y涂层并经过适当的预处理,促进了表面Al2O3及Cr2O3保护膜的形成,抑制了基体金属的氧化,提高了不锈钢的热腐蚀抗力。  相似文献   

7.
超支化聚氨酯阻尼涂层的制备及性能   总被引:4,自引:0,他引:4  
以甲苯-2,4-二异氰酸酯(TDI)和二乙醇胺(DEOA)为原料, 采用一步法合成了超支化聚氨酯, 并对其改性制备了光固化超支化聚氨酯(UV-HPU)和超支化杂化聚氨酯(HHPU)两种树脂. 用傅里叶红外光谱(FTIR)和核磁共振氢谱(1H NMR)表征了预期产物. 以其为预聚物制备阻尼涂层, 动态力学分析(DMA)研究表明, 这两种涂层都具有高阻尼因子(tanδ≥1.0)、宽阻尼温度范围(tanδ≥0.5, 大于50 ℃)和宽阻尼频率范围(20~160 Hz); 通过基本性能测试和热重分析(TGA)发现杂化涂层聚氨酯较光固化聚氨酯具有更好的机械性能和热稳定性能; 杂化涂层聚氨酯的FTIR分析可知杂化涂层中硅氧烷水解缩合, 提高了交联密度; 杂化材料的断面扫描电镜(SEM)分析表明, 硅氧烷的水解缩合并未形成大颗粒纳米粒子而是形成均相体系.  相似文献   

8.
刘建华  董琳  于美  李松梅  詹中伟 《化学学报》2012,70(20):2179-2186
采用阴极电泳沉积的方法在LC4铝合金表面制备硅锆有机-无机杂化涂层, 并探讨了电泳沉积条件对涂层形貌、结构以及耐蚀性的影响. 采用纳米粒度仪检测了不同硅锆杂化溶胶的zeta电位; 采用扫描电子显微镜(SEM)和原子力显微镜(AFM)观察了涂层的表面微观形貌和粗糙程度; 采用傅里叶红外光谱(FTIR)研究了涂层的化学结构; 采用电化学方法研究了沉积电压对涂层耐蚀性能的影响, 进而探讨了电泳沉积增强杂化涂层耐蚀性的机理. 结果显示沉积体系的pH为1.6、沉积电压为5 V时为最佳的沉积条件, 所获得的硅锆有机-无机杂化涂层表面均匀致密性最好, 粗糙程度和耐蚀性都得到了明显的改善, 在3.5% NaCl溶液中体现出较好的耐蚀作用.  相似文献   

9.
钛基表面纳米羟基磷灰石涂层的电泳沉积   总被引:3,自引:0,他引:3  
陈菲  林昌健  王周成 《电化学》2005,11(1):67-71
应用沉淀法合成纳米羟基磷灰石,并以电泳沉积法在粗糙化的钛表面制备纳米结构的羟基磷灰石涂层.纳米涂层有利于保持羟基磷灰石的化学组成和结构,制备的涂层均匀并且无裂缝,烧结后涂层仍保持纳米结构,其烧结温度也明显降低。钛表面经化学处理后,可形成很多微孔和TiO2薄层,增强了涂层和基体之间的结合.涂层的结合力为 18±2. 5MPa,硬度和杨式模量分别为 32. 0和 2. 4GPa.  相似文献   

10.
超支化聚酯修饰多壁碳纳米管   总被引:2,自引:0,他引:2  
将碳纳米管先用V(H2SO4)∶V(HNO3)=3∶1混合溶液进行处理,再用V(H2SO4)∶V(H2O2=4∶1的混合溶液进一步酸化,制得含有羧基的碳纳米管。将羧基化碳纳米管与二氯亚砜反应使碳纳米管连接酰氯基团,利用酰氯基团与超支化聚酯上的羟基反应,将超支化聚酯接到碳纳米管的表面上,实现了碳纳米管的表面修饰。利用红外光谱、拉曼光谱、透射电镜观察分析测试结果表明,超支化聚酯以共价键形式连接到碳纳米管的表面。热失重分析结果表明,修饰密度为每321个C原子连接1个H20分子,每842个C原子上连接1个H40分子。修饰后的碳纳米管在有机溶剂中的溶解性能明显提高。  相似文献   

11.
Alumina‐former coatings have been known as the best surface engineering approach to combat high temperature corrosion in gas turbine industry. In this investigation, attempts have been made to obtain a titanium‐modified aluminide coating with improved protective properties. Modification has been achieved by introducing titanium in the coating composition by a two‐stage coating treatment; titanium coating and subsequent aluminising. The modified coatings were characterised and compared with simple aluminides by means of electron metallography, depth elemental profiling and x‐ray diffraction techniques. Experimental results indicated that pre‐titanising diffusion treatment is an effective route to modify chemical composition of simple aluminide coating. The final microstructure of the coating was β‐NiAl matrix with titanium‐bearing precipitates mainly distributed in near surface layers. The mechanism of the coating formation is discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
在镁合金基底表面直接制备热障涂层,涂层的耐蚀性较差。采用超音速火焰喷涂法在镁合金基底和热障涂层之间分别制备了Al涂层和Zn涂层。通过XRD,SEM和EDS对涂层进行物相、微观结构和点扫描元素分析,采用电化学工作站对Al涂层试样和Zn涂层试样进行耐腐蚀性分析,同时研究了含Al中间层和含Zn中间层的热障涂层的抗热震性能。结果表明:Al涂层表面粗糙度(10.237±0.527μm)大于Zn涂层表面粗糙度(7.171±0.488μm),且喷涂过程中仅有轻微氧化。Al涂层试样的耐腐蚀性优于Zn涂层试样。含Zn中间层的热障涂层具有更好的抗热震性能。  相似文献   

13.
Cerium-based conversion coatings were deposited on a Zn-5%Al alloy by immersing the alloy in cerium nitrate aqueous solutions with various immersion times. The growth behaviour of the cerium-based conversion coating on the Zn-5%Al alloy was investigated by the electrochemical impedance spectroscopy (EIS), SEM, energy dispersive spectroscopy (EDS), and XPS techniques. The results reveal that the coating mainly consists of ZnO, Zn(OH)2, Ce(OH)4, Ce(OH)3, CeO2, and Ce2O3. The growth of the cerium-based conversion coating is accompanied by metal dissolution. The dissolution mainly occurs on the η-Zn surface of the phase boundary and continues to extend to the Zn-rich phase as the coating grows. EIS results show that with increasing immersion time, the corrosion resistance of the Ce conversion coating gradually increases in the early growth stage and then decreases when the cracks appear.  相似文献   

14.
Modern engineering science and nanotechnology have hastened the development of high performance corrosion‐resistant coatings having a broad spectrum of effectivity under a wider range of hostile environments. The formulation of such coating systems is expected to cause a major revolution in the corrosion world. Conducting polymers have recently proved to be an effective alternative to phosphate–chromate pretreatment that is hazardous due to toxic hexavalent chromium. Moreover, improvements in environmental impact can be achieved by utilizing nanostructured particulates in coating and eliminating the requirement of toxic solvents. The paper reports some preliminary investigations on the corrosion resistance performance of nanostructured methyl orange (MO)‐doped polyaniline (PANI)/castor oil polyurethane (COPU) composite coatings on mild steel (MS). The nanostructure of the MO‐PANI was confirmed by transmission electron microscopy (TEM). The corrosion protective performance was evaluated by physico‐mechanical properties, corrosion rate, and open circuit potential measurements. These coatings were found to act as “corrosion sensors” by exhibiting different colors when placed in acid as well as alkaline media. The protective behavior of coatings was attributed to the formation of a passive iron oxide/dopant layer at the metal‐coating interface that impedes the penetration of the corrosive ions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The conversion coating with golden color and improved corrosion resistance had been prepared by adding Mn2+ in the Ti/Zr conversion coating solution. Comparing with that of conversion coating without Mn2+, the optimal treatment time of this conversion coating was much shorter and the corrosion resistance was obviously improved. The effect of Mn2+ on the formation of golden Ti/Zr conversion coating was thoroughly investigated by means of energy dispersive X‐ray spectroscopy, SEM, XPS, and Raman and electrochemical workstation. The results showed that the conversion coating had a double‐layer structure: the outer layer consisted of the metal‐organic complex and the inner layer was mainly made up of Na3AlF6. Mn2+ was oxidized into MnOOH in solution and precipitated on the substrate surface which provided the nucleus to Na3AlF6 crystal and accelerated Na3AlF6 crystal formation and also made the microstructure of conversion coating change to the cubic. The mechanism of the formation of the conversion coating can be deemed as nucleation, growth of Na3AlF6 crystal, and formation of metal‐organic complex. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
6063铝合金三价铬化学转化膜的制备与电化学性能   总被引:2,自引:0,他引:2  
以硫酸铬钾及磷酸为原料在6063铝合金上制备了三价铬化学转化膜. 采用极化曲线及交流阻抗技术研究了不同条件下三价铬转化膜的电化学性能. 结果表明, 温度为30-40 ℃、沉积时间为9 min、pH值为2.0-3.0、KCr(SO4)2为15-25 g·L-1及H3PO4的浓度为10-20 g·L-1的条件为最优条件. Tafel极化曲线结果表明化学转化膜比基体铝合金具有更正的腐蚀电位(Ecorr)、小孔腐蚀电位(Epit)和更低的腐蚀电流(icorr), 说明化学转化膜具有良好的耐腐蚀性能. 利用交流阻抗谱的数据建立了等效电路模型, 并拟合出了腐蚀参数, 如表面电阻(Rcoat)及电容(Ccoat), 电荷转移电阻(Rct)及双电层电容(Cdl)等. 三价铬化学转化膜的交流阻抗谱结果与极化曲线的电化学测试结果相吻合.  相似文献   

17.
A superhydrophobic coating applied in corrosion protection was successfully fabricated on the surface of aluminum alloy by chemical etching and surface modification. The water contact angle on the surface was measured to be 161.2° ± 1.7° with sliding angle smaller than 8°, and the superhydrophobic coating showed a long service life. The surface structure and composition were then characterized by means of SEM and XPS. The electrochemical measurements showed that the superhydrophobic coating significantly improved the corrosion resistance of aluminum alloy. The superhydrophobic phenomenon of the prepared surface was analyzed with Cassie theory, and it was found that only about 6% of the water surface is in contact with the metal substrate and 94% is in contact with the air cushion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
A new method of depositing an insulating multifunctional oxide coating on metal particles was developed. Such coatings increase corrosion resistance and insulate metal particles from each other. On base of capsulated by oxide coating water-atomized iron powder ASC100.29, new composite soft magnetic materials were synthesized, which are able of replacing electrical steel in devices. Structural, electromagnetic properties and corrosion characte-ristics of the obtained composites were studied. It was found that the synthesized composite materials have low electromagnetic losses, high values of magnetic induction(up to 2.1 T) and good corrosion resistance. The results demonstrate that the use of such materials in power supplies, chokes, transformers, stators and rotors of electric machines and other products ensures their stable operation under various conditions.  相似文献   

19.
A layer of Al coatings was prepared on the S355 steel by arc spraying, which was conducted by anodic oxidation treatment; the morphologies, chemical element compositions and phases of Al coating, and anodic oxide layer were analyzed with field emission scanning electron microscope (FESEM), energy dispersive spectrometer (EDS) and X‐ray diffraction (XRD), respectively. The corrosion protections of Al coating before and after anodic oxidation were discussed with a seawater immersion test; the corrosion resistance mechanisms of Al coating and anodic oxide layer in the seawater were also investigated. The results show that the thickness of Al coating is about 300 µm by arc spraying, the sample surfaces become loose after seawater immersion corrosion and Cl? and O2? penetrate into the substrate from the cracks, destroying the binding properties of coating–substrate, and the coating fails. After anodic oxidation, the oxide layer is formed in the surface of Al coating with the thickness of about 30 µm; the corrosion products are mainly composed of Al(OH)3, which barraged the holes caused by seawater corrosion. The corrosion cracks are formed during the corrosion, while the number and depth of cracks decrease obviously after anodic oxidation treatment. The corrosion of Al coating becomes the local corrosion after anodic oxidation treatment, and the grains are smaller, which are easily nucleated to form a new corrosion resistance layer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Calcium-phosphate compounds(Ca-P) coating was prepared on an Mg-Al alloy(AZ60). Biodegradation of Ca-P coated magnesium alloy was evaluated in simulated body fluid(SBF) by examining the changes in magnesium ion concentration and pH value, which indicated that the Ca-P coating on magnesium alloy strongly affected the corrosion of magnesium alloy. Osteoblast MC3T3-E1 cells were utilized to investigate the cellular cytocompatibility. The cytocompatibility was measured by carrying out a series of tests, such as cholecystokinin-octapeptide(CCK-8) test, alkaline phosphatase activity(ALP) test, cellular morphology of hematoxylin-eosin(HE) staining and the induction of apoptosis. It was found that the cell function showed better in the Ca-P coated Mg-alloy extract than in the uncoated magnesium alloy extract. In summary, the results indicate that the Ca-P coating can improve the corrosion resistance of magnesium alloy and elevate cellular proliferation and differentiation of osteoblast MC3T3-E1 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号