首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A simple polyelectrolyte multilayer (PEM) coating procedure was used for the development of stable modified capillaries. PEM coatings were constructed in fused-silica capillaries using alternating rinses of cationic and anionic polyelectrolytes. The multilayer coatings investigated in this study consisted of two and twenty layer pairs, or bilayers. A bilayer is one layer of a cationic polymer and one layer of an anionic polymer. Poly(diallyldimethylammonium chloride) was used as the cationic polymer, and the polymeric surfactant poly(sodium N-undecanoyl-L-leucylvalinate) was used as the anionic polymer. Previous studies for both chiral and achiral separations have shown that PEM-coated capillaries have excellent reproducibilities, remarkable endurance, and strong stabilities against extreme pH values when used in open-tubular capillary electrochromatography (OT-CEC). In this study, the stability of the coatings was further investigated after exposure to 0.1 M and 1.0 M NaOH. Structural changes of these coatings were monitored using laser scanning confocal microscopy (LSCM) after flushing the capillaries with NaOH. This technique allowed observation of the degradation of the coatings. Observations are discussed in terms of separations using OT-CEC. Electropherograms obtained from the chiral separation of 1,1'-binaphthyl-2,2'-dihydrogenphosphate in OT-CEC showed a decrease in selectivity and an increase in electroosmotic mobility after long exposure to NaOH. The ability to recover the capillaries by exposure to NaOH was also demonstrated. Measurements of electroosmotic mobility and selectivity showed that 2-bilayer and 20-bilayer PEM coatings could be completely removed from the capillary surface after approximately 3.5 and 9.5 h, respectively, of continuous exposure to 1 M NaOH.  相似文献   

2.
Mixed mode (MM) separation using a combination of MEKC and polyelectrolyte multilayer (PEM) coatings is herein reported for the separation of achiral and chiral analytes. Many analytes are difficult to separate by MEKC and PEM coatings alone. Therefore, the implementation of a MM separation provides several advantages for overcoming the limitations of these well‐established methods. In this study, it was observed that achiral separations using MEKC and PEM coatings individually resulted in partial resolution of eight very similar aryl ketones when the molecular micelle (sodium poly(N‐undecanoyl‐L ‐glycinate)) concentration was varied from 0.25 to 1.00% w/v and the bilayer number varied from 2 to 4. However, when MM separation was introduced, baseline resolution was achieved for all eight analytes. In the case of chiral separations, temazepam, aminoglutethimide, benzoin, benzoin methyl ether, and coumachlor were separated using the three separation techniques. For chiral separations, the chiral molecular micelle, sodium poly(N‐undecanoyl‐L ‐leucylvalinate), was employed at concentrations of 0.25–1.50% w/v for both MEKC and PEM coatings. Overall, the results revealed partial separation with MEKC and PEM coatings individually. However, MM separation enabled baseline separation of each chiral mixture. The separation of achiral and chiral compounds from different compound classes demonstrates the versatility of this MM approach.  相似文献   

3.
A decade of capillary electrophoresis   总被引:2,自引:0,他引:2  
Issaq HJ 《Electrophoresis》2000,21(10):1921-1939
Since the introduction of the first commercial capillary electrophoresis (CE) instrument a decade ago, CE applications have become widespread. Today, CE is a versatile analytical technique which is successfully used for the separation of small ions, neutral molecules, and large biomolecules and for the study of physicochemical parameters. It is being utilized in widely different fields, such as analytical chemistry, forensic chemistry, clinical chemistry, organic chemistry, natural products, pharmaceutical industry, chiral separations, molecular biology, and others. It is not only used as a separation technique but to answer physicochemical questions. In this review, we will discuss different modes of CE such as capillary zone electrophoresis, micellar electrokinetic chromatography, capillary gel electrophoresis, capillary isoelectric focusing, and capillary electrochromatography, and will comment on the future direction of CE, including array capillary electrophoresis and array microchip separations.  相似文献   

4.
This review represents a summary of recent progress in open-tubular capillary electrochromatography (OT-CEC) for chiral and achiral separations. The OT-CEC approach is an alternative to packed-CEC that could eliminate the problems associated with retaining frits and silica particles. In OT-CEC, the stationary phase is immobilized on the inner walls of the capillary. Preparation of the stationary phase is critical for OT-CEC. The preparation methods for capillary columns include (i) adsorption, (ii) covalent bonding and/or cross-linking, (iii) porous layers, (iv) chemical bonding after etching, (v) sol-gel, and (vi) molecular imprinting. Major developments, potential applications, technical difficulties and advantages associated with these wall coatings in OT-CEC are presented. In addition, the coupling of OT-CEC with mass spectrometry (MS) is briefly reviewed. Several applications of this hyphenated technique for analytical separations are also summarized.  相似文献   

5.
A stable polyelectrolyte multilayer (PEM) coating was investigated for use in open-tubular capillary electrochromatography (o-CEC). In this approach, the PEM consisted of the cationic polymer of a quaternary ammonium salt, poly(diallyldimethylammonium chloride) and the anionic polymeric surfactant, poly(sodium undecylenic sulfate). Both the cationic and anionic polymers were physically adsorbed to the surface of a fused-silica capillary by use of a simple coating procedure. This procedure involved an alternate rinse of the positively and negatively charged polymers. The performance of the PEM coating as a dynamic stationary phase was evaluated by use of electrochromatographic experiments and showed good selectivity for both phenols and benzodiazepines. Reproducibility of the PEM coating was also evaluated by calculating the relative standard deviations (RSDs) of the electroosomotic flow (EOF). The run-to-run and capillary-to-capillary RSD values of the EOF were less than 1.5%. The endurance of the coating was more than 100 runs. The importance of the PEM coating was illustrated by comparing separations on a bare uncoated capillary with the coated capillary. In addition, the chromatographic performance using o-CEC and micellar electrokinetic chromatography (MEKC) was compared for the separation of benzodiazepines.  相似文献   

6.
Monolithic columns for capillary electrochromatography are receiving quite remarkable attention. This review summarizes results excerpted from numerous papers concerning this rapidly growing area with a focus on monoliths prepared from synthetic polymers. Both the simplicity of the in situ preparation and the large number of readily available chemistries make the monolithic separation media a vital alternative to capillary columns packed with particulate materials. Therefore, they are now a well-established stationary phase format in the field of capillary electrochromatography. A wide variety of synthetic approaches as well as materials used for the preparation of the monolithic stationary phases are presented in detail. The analytical potential of these columns is demonstrated with separations involving various families of compounds and different chromatographic modes.  相似文献   

7.
Monolithic columns for capillary electrochromatography (CEC) are receiving quite remarkable attention. Both the simplicity of the in situ preparation and the large number of readily available chemistries make the monolithic separation media a vital alternative to capillary columns packed with particulate materials. This review summarizes the current state-of-the-art in this rapidly growing area of CEC with a focus on monolithic capillary columns prepared from synthetic polymers. Recent achievements in column technologies for both high-performance liquid chromatography and capillary electrophoresis are used as the starting point to highlight the influence of these well established analytical methods on the development of monolithic capillary columns for CEC. The effects of individual variables on the separation properties of monolithic capillaries are discussed in detail. The analytical potential of these columns is demonstrated with separations involving various families of compounds in different chromatographic modes.  相似文献   

8.
Greater stability of liposome coatings and improved resolution of model steroids in capillary electrochromatography (CEC) were sought by adding small diamines (ethylenediamine, diaminopropane, bis-tris-propane, or N-(2-hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid, HEPES)) to the liposome solution before coating of fused silica capillaries. The phospholipid coatings consisted of 1 mM of 8:2 mol% phosphatidylcholine (PC)/phosphatidylserine (PS) and 5 mM of modifier in buffer solutions (acetate, phosphate, or Tris) at pH 4.0-7.4. The coating was based on a published procedure, and five steroids were used as neutral model analytes in evaluation of the coating. The results showed that under optimal conditions, the small linear diamines increased the packing density of anionic phospholipids, leading to improved separations. In addition, the choice of buffer for the liposome coating and separation appeared to influence the performance of the coatings. While buffers with amino groups take part in the phospholipid bilayer formation, buffers like phosphate may even have negative effect on coating formation. The factors affecting phospholipid coatings with diamines as modifiers are clarified.  相似文献   

9.
The main objective of this study is the use of polymeric surfactants in polyelectrolyte multilayer (PEM) coatings for the separation of the pharmaceutical substances acetylcholinesterase inhibitors (AChEIs). AChEIs are used for the treatment of Alzheimer's Disease and Myasthenia Gravis. In the open-tubular capillary electrochromatography (OT-CEC) mode, the PEM coating is evaluated using nine AChEIs. Optimal conditions are established by altering several experimental parameters such as the pH of the background electrolyte (BGE), the anionic polymer for the PEM coating, the concentration of NaCl, which is used as an additive in the polymer deposition solutions, the number of bilayers, the deposition time, and the concentration of the polymeric surfactant. 25 mM NaH(2)PO(4).H(2)Ο and 25 mM Na(2)HPO(4) at pH 7 is used as BGE. Two bilayers of poly(diallyl dimethyl ammonium chloride) and poly(sodium N-undecanoyl L-leucinate) provide a baseline separation of all nine analytes in less than 4.5 min. Run-to-run reproducibility studies are also performed, and the relative standard deviation values of the migration times of the nine-analyte peaks are less than 2%. In addition, day-to-day, week-to-week and capillary-to-capillary reproducibilities are evaluated, and the relative standard deviation values of the electroosmotic flow are less than 2%. Finally, using the PEM coating approach, we were able to perform more than 150 runs in the same column. Neither the addition of the polymeric surfactant to the mobile phase, nor the reconstruction of the coating was necessary.  相似文献   

10.
Nan Lu  Jörg P. Kutter 《Electrophoresis》2020,41(24):2122-2135
This review summarizes recent developments (over the past decade) in the field of microfluidics-based solutions for enantiomeric separation and detection. The progress in various formats of microchip electrodriven separations, such as MCE, microchip electrochromatography, and multidimensional separation techniques, is discussed. Innovations covering chiral stationary phases, surface coatings, and modification strategies to improve resolution, as well as integration with detection systems, are reported. Finally, combinations with other microfluidic functional units are also presented and highlighted.  相似文献   

11.
The use of capillary electrochromatography as a chiral separation technique for pharmaceutical applications is reviewed. Publications of the past 10 years that provide a potential practical application in pharmaceutical analysis are considered. Method development or validation, separation strategies, and potential routine analysis by the methods/applications cited are the main subjects on which we focused our attention. The indirect chiral separation method was only used once in CEC mode. In the direct chiral separations, the use of chiral stationary phases was obviously preferred over the use of chiral mobile phases with non-chiral stationary phases. Amongst the chiral stationary phases, those based on macrocyclic antibiotics and polysaccharide selectors were the most frequently used. Monolithic stationary phases also have several applications, but not so extended as those with packed capillary electrochromatography. The considered papers not only describe the applicability of the technique for relatively large sets of chiral analytes, they also showed that various types of stationary phases can be produced in-house in a simple manner. However, to survive as a mature separation technique, considerable time and effort are still needed to solve some disadvantages currently characterizing capillary electrochromatography.  相似文献   

12.
Hilder EF  Svec F  Fréchet JM 《Electrophoresis》2002,23(22-23):3934-3953
This review summarizes the contributions of a number of groups working in the rapidly growing area of monolithic columns for capillary electrochromatography (CEC), with a focus on those prepared from synthetic polymers. Monoliths have quickly become a well-established stationary phase format in the field of CEC. The simplicity of their in situ preparation method as well as the good control over their porous properties and surface chemistries make the monolithic separation media an attractive alternative to capillary columns packed with particulate materials. A wide variety of approaches as well as materials used for the preparation of the monolithic stationary phases are detailed. Their excellent chromatographic performance is demonstrated by numerous separations of different analytes.  相似文献   

13.
Capillary electrophoresis of inorganic anions   总被引:1,自引:0,他引:1  
This review deals with the separation mechanisms applied to the separation of inorganic anions by capillary electrophoresis (CE) techniques. It covers various CE techniques that are suitable for the separation and/or determination of inorganic anions in various matrices, including capillary zone electrophoresis, micellar electrokinetic chromatography, electrochromatography and capillary isotachophoresis. Detection and sample preparation techniques used in CE separations are also reviewed. An extensive part of this review deals with applications of CE techniques in various fields (environmental, food and plant materials, biological and biomedical, technical materials and industrial processes). Attention is paid to speciations of anions of arsenic, selenium, chromium, phosphorus, sulfur and halogen elements by CE.  相似文献   

14.
This review gives a survey of selectivity modes in capillary electrophoresis separations in pharmaceutical analysis and bioanalysis. Despite the high efficiencies of these separation techniques, good selectivity is required to allow quantitation or identification of a particular analyte. Selectivity in capillary electrophoresis is defined and described for different separation mechanisms, which are divided into two major areas: (i) capillary zone electrophoresis and (ii) electrokinetic chromatography. The first area describes aqueous (with or without organic modifiers) and nonaqueous modes. The second area discusses all capillary electrophoretic separation modes in which interaction with a (pseudo)stationary phase results in a change in migration rate of the analytes. These can be divided in micellar electrokinetic chromatography and capillary electrochromatography. The latter category can range from fully packed capillaries, via open-tubular coated capillaries to the addition of microparticles with multiple or single binding sites. Furthermore, an attempt is made to differentiate between methods in which molecular recognition plays a predominant role and methods in which the selectivity depends on overall differences in physicochemical properties between the analytes. The calculation of the resolution for the different separation modes and the requirements for qualitative and quantitative analysis are discussed. It is anticipated that selectivity tuning is easier in separation modes in which molecular recognition plays a role. However, sufficient attention needs to be paid to the efficiency of the system in that it not only affects resolution but also detectability of the analyte of interest.  相似文献   

15.
Dermaux A  Sandra P 《Electrophoresis》1999,20(15-16):3027-3065
Applications performed by capillary electrochromatography (CEC) in all its modes, namely packed column CEC (packed-CEC), open tubular CEC (OT-CEC) and pressure-assisted CEC (pseudo-CEC), and published by June 1999 are reviewed. The review is divided into (i) separation of neutral, acidic and basic analytes with the main goal of evaluating column and system performance, (ii) separation according to field of application and/or chemical class, and (iii) separation of chiral analytes.  相似文献   

16.
Monolithic materials have quickly become a well‐established stationary phase format in the field of capillary electrochromatography (CEC). Both the simplicity of their in situ preparation method and the large variety of readily available chemistries make the monolithic separation media an attractive alternative to capillary columns packed with particulate materials. This review summarizes the contributions of numerous groups working in this rapidly growing area, with a focus on monolithic capillary columns prepared from synthetic polymers. Various approaches employed for the preparation of the monoliths are detailed, and where available, the material properties of the resulting monolithic capillary columns are shown. Their chromatographic performance is demonstrated by numerous separations of different analyte mixtures in variety of modes. Although detailed studies of the effect of polymer properties on the analytical performance of monolithic capillaries remain scarce at this early stage of their development, this review also discusses some important relationships such as the effect of pore size on the separation performance in more detail.  相似文献   

17.
Two novel polysiloxanes containing the metal complex, Co(TACN)(3+)2 (TACN= 1,4,7-triazacyclononane) were used as coatings for capillary electrophoresis (CE) and capillary electrochromatography (CEC). Through crosslinking and covalent bonding, the positively charged polymers were bonded to silica supports. In both CE and CEC, these coatings exhibited strong, pH-independent, and anodic electroosmotic flow (EOF), and had excellent long-term stability. Successful separations of aromatic acids were achieved in CE. In CEC, separation of alkylbenzenes (7 min) and basic compounds (20 min) was achieved with higher resolving power than conventional octadecyl silica packings. These polymers represent a new class of coatings for CE and CEC that generate pH-independent EOF.  相似文献   

18.
A fast method for the generation of permanent hydrophilic capillary coatings for capillary electrophoresis (CE) is presented. Such interior coating is effected by treating the surface to be coated with a solution of glutaraldehyde as cross-linking agent followed by a solution of poly(vinyl alcohol) (PVA), which results in an immobilization of the polymer on the capillary surface. Applied for capillary zone electrophoresis (CZE) such capillaries coated with cross-linked PVA exhibit excellent separation performance of adsorptive analytes like basic proteins due to the reduction of analyte-wall interactions. The long-term stability of cross-linked PVA coatings could be proved in very long series of CZE separations. More than 1000 repetitive CE separations of basic proteins were performed with stable absolute migration times relative standard deviation (RSD > 1.2%) and without loss of separation efficiency. Cross-linked PVA coatings exhibit a suppressed electroosmotic flow and excellent stability over a wide pH range.  相似文献   

19.
Recent progress in chiral separation principles in capillary electrophoresis   总被引:11,自引:0,他引:11  
Gübitz G  Schmid MG 《Electrophoresis》2000,21(18):4112-4135
This review summarizes recent developments in the field of chiral separations by electromigration techniques including capillary zone electrophoresis (CZE), capillary gel electrophoresis (CGE), isotachophoresis (ITP), electrokinetic chromatography (EKC), and capillary electrochromatography (CEC). This overview focuses on the development of new chiral selectors and the introduction of new techniques rather than applications of already established selectors and methods. The mechanisms of the different chiral separation principles are discussed.  相似文献   

20.
Jouyban A  Kenndler E 《Electrophoresis》2008,29(17):3531-3551
This review deals with the determination of impurities in pharmaceuticals by electromigration methods in the capillary format. These separation methods are either based on the different effective mobility of the charged analytes (as in zone electrophoresis and isotachophoresis) or include hybrid methods such as micellar electrokinetic chromatography, microemulsion electrokinetic chromatography and electrochromatography. The pharmaceutically active compounds under consideration belong to chemotherapeutic agents, central nervous system drugs, histamine receptor drugs, cardiovascular drugs, anticancer drugs, anti-inflammatory drugs and some other drugs. The review discusses about 150 publications from the period between 1980 and 2007 with special emphasis on the recent trends and gives details about the experimental conditions applied for analyses and the obtained analytical performance parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号