首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The combination of ultrasound echo images with digital particle image velocimetry (DPIV) methods has resulted in a two-dimensional, two-component velocity field measurement technique appropriate for opaque flow conditions including blood flow in clinical applications. Advanced PIV processing algorithms including an iterative scheme and window offsetting were used to increase the spatial resolution of the velocity measurement to a maximum of 1.8 mm×3.1 mm. Velocity validation tests in fully developed laminar pipe flow showed good agreement with both optical PIV measurements and the expected parabolic profile. A dynamic range of 1 to 60 cm/s has been obtained to date.  相似文献   

2.
Digital particle image velocimetry   总被引:51,自引:13,他引:51  
Digital particle image velocimetry (DPIV) is the digital counterpart of conventional laser speckle velocitmetry (LSV) and particle image velocimetry (PIV) techniques. In this novel, two-dimensional technique, digitally recorded video images are analyzed computationally, removing both the photographic and opto-mechanical processing steps inherent to PIV and LSV. The directional ambiguity generally associated with PIV and LSV is resolved by implementing local spatial cross-correlations between two sequential single-exposed particle images. The images are recorded at video rate (30 Hz or slower) which currently limits the application of the technique to low speed flows until digital, high resolution video systems with higher framing rates become more economically feasible. Sequential imaging makes it possible to study unsteady phenomena like the temporal evolution of a vortex ring described in this paper. The spatial velocity measurements are compared with data obtained by direct measurement of the separation of individual particle pairs. Recovered velocity data are used to compute the spatial and temporal vorticity distribution and the circulation of the vortex ring.  相似文献   

3.
Influences of evaluation bias of the correlation-based interrogation algorithm on particle image velocimetry (PIV) measurement of turbulent flow are investigated. Experimental tests in the Iowa Institute of Hydraulic Research towing tank with a towed PIV system and a surface-piercing flat plate and simulations demonstrate that the experimentally determined mean velocity and Reynolds stress components are affected by the evaluation bias and the gradient of the evaluation bias, respectively. The evaluation bias and gradient of the evaluation bias can both be minimized effectively by using Gaussian digital masks on the interrogation window, so that the measurement uncertainty can be reduced. Received: 16 September 1999/Accepted: 7 February 2000  相似文献   

4.
The depth of correlation (DOC) is an experimental parameter, introduced to quantify the thickness of the measurement volume and thus the depth resolution in microscopic particle image velocimetry (μPIV). The theory developed to estimate the value of the DOC relies on some approximations that are not always verified in actual experiments, such as a single thin-lens optical system. In many practical μPIV experiments, a deviation of the actual DOC from its nominal value can be expected, due for instance to additional components present in the optical path of the microscope or to the use of image preprocessing before the PIV evaluation. In the presented paper, the effect of real particle image intensity distribution and image preprocessing on the thickness of the measurement volume is investigated. This is performed studying the defocusing of tracer particles and the DOC-related bias error present in μPIV measurements in a Poiseuille flow. The analysis shows that the DOC predicted using the conventional formulas can be significantly smaller than its actual value. To overcome this problem, the use of an effective NA determined experimentally from the curvature of the image autocorrelations is proposed. The accuracy of this approach to properly predict the actual size of DOC is discussed and validated on the experimental data. The effectiveness of image preprocessing to reduce the DOC-related bias error is tested and discussed as well.  相似文献   

5.
A new and unique high-resolution image acquisition system for digital particle image velocimetry (DPIV) in turbulent flows is used for the measurement of fully-developed turbulent pipe flow at a Reynolds number of 5300. The flow conditions of the pipe flow match those of a direct numerical simulation (DNS) and of measurements with conventional (viz., photographic) PIV and with laser-Doppler velocimetry (LDV). This experiment allows a direct and detailed comparison of the conventional and digital implementations of the PIV method for a non-trivial unsteady flow. The results for the turbulence statistics and power spectra show that the level of accuracy for DPIV is comparable to that of conventional PIV, despite a considerable difference in the interrogation pixel resolution, i.e. 32 × 32 (DPIV) versus 256 × 256 (PIV). This result is in agreement with an earlier analytical prediction for the measurement accuracy. One of the advantages of DPIV over conventional PIV is that the interrogation of the DPIV images takes only a fraction of the time needed for the interrogation of the PIV photographs.  相似文献   

6.
 The Minimum Quadratic Difference (MQD) method is compared with methods conventionally used for the evaluation of PIV recordings, i.e. correlation-based evaluation with fixed interrogation windows (auto- or cross-correlation) and correlation-based tracking. The comparison is performed by studying the evaluation accuracy achieved when applying these methods to pairs of synthetic PIV recordings for which the true displacements are known. The influence of the magnitude of the particle image displacement, evaluation window size, density of particle image distribution, and particle image size on the accuracy are investigated. In all these cases the best results in terms of a statistical error are obtained with the MQD method. The superiority of the MQD method can be explained with its potential of accounting for non-uniformities in the particle image distribution and a non-uniform illumination. It is also shown that the conventional correlation-based methods may produce principal errors that are non-existent for the MQD method. The evaluation speed achievable for the MQD method by making use of the FFT is comparable to that common for the generally used auto- or cross-correlation algorithm. Finally, a quantitative explanation is given for the often observed phenomenon that PIV velocity results tend to be smaller than the true values. Received: 15 May 1998/Accepted: 24 April 1999  相似文献   

7.
This paper presents the application of optical measurement techniques in dense-gas flows in a heavy-gas channel to determine planar two-component (2C) velocity profiles and two-dimensional (2D) temperature profiles. The experimental approach is rather new in this area, and represents progress compared with the traditional techniques based on thermocouple measurements. The dense-gas flows are generated by the evaporation of liquid nitrogen. The optical measurement of both the velocity and density profiles is accomplished by the implementation of particle image velocimetry (PIV) and background-oriented schlieren (BOS) systems. Supplemental thermocouple measurements are used as independent calibrations to derive temperatures from the density data measured with the BOS system. The results obtained with both systems are used to quantify the dilution behavior of the propagating cloud through a global entrainment parameter . Its value agrees well with the results obtained by earlier studies.  相似文献   

8.
One of the key factors that limit accuracy of particle image velocimetry (PIV) is the peak-locking effect. In this paper, a previously uncharacterised source of peak locking is presented. This source is neither related to the sensor geometry nor the subpixel resolution peak-fitting algorithms. It is present even when the particles are well described in terms of sensor spatial resolution (i.e. for particle diameters larger than 2 pixels). If no specific actions to avoid it are taken, its effect is especially important in those super-resolution systems that are based on iteratively reducing the size of the interrogation window. In this work, the mentioned source and its effects are studied and modelled. Based on this study, the actions required to avoid this type of peak locking are described. This includes the most usual correlation-based PIV systems, as well as super-resolution ones. Once this source of inaccuracy is avoided, it is possible to discriminate the performance of different types of correlation algorithms. As a consequence, specific proposals for the algorithms in the last steps of multigrid super-resolution PIV systems are given. The performances of the proposed solutions are verified using both synthetic and real PIV images. Received: 31 January 2000/Accepted: 2 May 2000  相似文献   

9.
Methodological aspects concerning the application of the PIV technique to the study of turbulent flames are discussed in this paper. The physical features of the flow, which have implications for the experimental set-up, image processing and measurement accuracy are identified. Design considerations are developed focusing on several factors: spatial resolution, particle performance, seeding technique, image formation and recording, and image post-processing for the evaluation of the displacement. Relevant uncertainty concerns are related to the effect of the thermophoretic force, acting on a seeding particle while crossing the flame front, and to the non-homogeneity and time-dependence of the refractive index field. The uncertainty due to thermophoresis is assessed by numerically studying the motion of a particle crossing a reference temperature profile. The effect of the refractive index variation is evaluated by means of theoretical analysis of light propagation and image formation, supported by experimental tests designed for this special purpose. Received: 25 November 1999/Accepted: 31 March 2000  相似文献   

10.
 In this paper the bias phenomenon in the evaluation of PIV recordings by using the correlation-based interrogation algorithm is discussed, and a digital mask technique, that can effectively reduce the bias error, is introduced. The correlation-based interrogation algorithm, when masked with a Gaussian window function, can achieve a higher evaluation accuracy not only for PIV recordings of flows with small velocity gradients, but also for that of flows with large gradients. Received: 14 October 1998/Accepted: 20 July 1999  相似文献   

11.
An experiment is conducted in a four-roll mill to verify a novel particle image velocimetry (PIV) recording evaluation method that combines the advantages of central difference interrogation and an image correction technique. Simulations and experiments in the four-roll mill geometry demonstrate that the central difference image correction method described in this paper can not only avoid the bias error resulting from the curvature and high-velocity-gradient flow but also effectively reduce the random error resulting from particle image distortion. Two image correction schemes and two base algorithms are discussed. A four-point image correction scheme is suggested on the basis of the traditional correlation-based interrogation algorithm to enable a fast, high-accuracy evaluation of PIV recordings in complex flows. In addition, the PIV experiment accurately determines the velocity field in the four-roll mill and confirms the linear distributions of the velocity components and the roller speed.  相似文献   

12.
黄湛  张淼  程攀  王宏伟 《实验力学》2016,(5):673-682
光流测量技术作为一种新的空气动力学实验技术,以其像素级分辨率的矢量场测量优势获得广泛的应用。光流测量技术使用光流约束方程,配合平滑限定条件,可以进行速度场测量,获得高分辨率的全局矢量场。本文首先通过研究积分最小化光流测速理论和算法,采用C++编写光流速度测量程序;然后通过三种典型的人工位移图像对光流计算程序进行了验证,并将结果和标准位移分布进行比对分析,以指导如何在实际应用中获得高精度光流速度场;最后进行小型风洞后向台阶实验,利用高速相机拍摄示踪粒子图像,使用光流计算程序获得速度矢量场,同采用互相关算法的粒子图像测速计算结果相比较,体现出光流计算方法像素级分辨率的矢量场测量优势。  相似文献   

13.
 The features of an improved algorithm for the interrogation of (digital) particle image velocimetry (PIV) pictures are described. The method is based on cross-correlation. It makes use of a translation of the interrogation areas. Such a displacement is predicted and corrected by means of an iterative procedure. In addition, while iterating, the method allows a refinement of the size of the interrogation areas. The quality of the measured vectors is controlled with data validation criteria applied at each intermediate step of the iteration process. A brief section explains the expected improvements in terms of dynamic range and resolution. The accuracy is assessed analysing images with imposed displacement fields. The improved cross-correlation algorithm has been applied to the measurement of the turbulent flow past a backward facing step (BFS). A systematic comparison is presented with Direct Numerical Simulation (DNS) data available on the subject. Received: 7 October 1997/Accepted: 11 August 1998  相似文献   

14.
The vortex street of a turbine blade profile (VKI-1, 58 mm chord length) was investigated by particle image velocimetry (PIV) and laser vibrometry in a Mach number range between 0.26 and 0.78. While the laser vibrometer (LV) measured the frequency of the density fluctuations in the wake and around the profile, PIV helped to clarify the vortex shedding process. The recordings done by the LV resulted in detailed frequency data of vortex shedding when Mach number and Reynolds number were varied, while the results obtained by PIV enabled a phase resolved measurement of the flow field during vortex shedding.  相似文献   

15.
Instantaneous planar pressure determination from PIV in turbulent flow   总被引:2,自引:0,他引:2  
This paper deals with the determination of instantaneous planar pressure fields from velocity data obtained by particle image velocimetry (PIV) in turbulent flow. The operating principles of pressure determination using a Eulerian or a Lagrangian approach are described together with theoretical considerations on its expected performance. These considerations are verified by a performance assessment on a synthetic flow field. Based on these results, guidelines regarding the temporal and spatial resolution required are proposed. The interrogation window size needs to be 5 times smaller than the flow structures and the acquisition frequency needs to be 10 times higher than the corresponding flow frequency (e.g. Eulerian time scales for the Eulerian approach). To further assess the experimental viability of the pressure evaluation methods, stereoscopic PIV and tomographic PIV experiments on a square cylinder flow (Re D  = 9,500) were performed, employing surface pressure data for validation. The experimental results were found to support the proposed guidelines.  相似文献   

16.
A two-color particle image velocimetry (PIV) technique has been applied to a single-cylinder motored research engine. Two-color PIV is a quantitative planar velocity measurement technique that can unambiguously determine the velocity magnitude and direction.

The work includes the development of an interrogation system, a series of computer simulations to determine the performance of the technique under various conditions, the comparison of these results to similar ones obtained for an autocorrelation PIV system, and a test of the technique by reconstructing the velocity field of a uniform jet flow.

The technique was then applied to the in-cylinder flow field of a motored single-cylinder, cup-in-head, research engine. A total of 27 instantaneous velocity fields were obtained at a single measurement plane for a single operating condition of the engine. The data were analyzed to yield ensemble-averaged velocity and velocity fluctuation.  相似文献   


17.
The uncertainty of any measurement is the interval in which one believes the actual error lies. Particle image velocimetry (PIV) measurement error depends on the PIV algorithm used, a wide range of user inputs, flow characteristics, and the experimental setup. Since these factors vary in time and space, they lead to nonuniform error throughout the flow field. As such, a universal PIV uncertainty estimate is not adequate and can be misleading. This is of particular interest when PIV data are used for comparison with computational or experimental data. A method to estimate the uncertainty from sources detectable in the raw images and due to the PIV calculation of each individual velocity measurement is presented. The relationship between four error sources and their contribution to PIV error is first determined. The sources, or parameters, considered are particle image diameter, particle density, particle displacement, and velocity gradient, although this choice in parameters is arbitrary and may not be complete. This information provides a four-dimensional “uncertainty surface” specific to the PIV algorithm used. After PIV processing, our code “measures" the value of each of these parameters and estimates the velocity uncertainty due to the PIV algorithm for each vector in the flow field. The reliability of our methodology is validated using known flow fields so the actual error can be determined. Our analysis shows that, for most flows, the uncertainty distribution obtained using this method fits the confidence interval. An experiment is used to show that systematic uncertainties are accurately computed for a jet flow. The method is general and can be adapted to any PIV analysis, provided that the relevant error sources can be identified for a given experiment and the appropriate parameters can be quantified from the images obtained.  相似文献   

18.
Application of particle image velocimetry (PIV) techniques for measurement of fluid velocities typically requires two steps. The first of these is the photography step in which one or more exposures of a particle field are taken. The second step is the evaluation of the particle pattern and production of appropriate velocities. Each of these steps involves optimization which is usually specific to the experiment being conducted and there is significant interaction between photographic parameters and evaluation characteristics.Among the various evaluation techniques suggested for analysis of PIV images is the evaluation of the scattered interference pattern (Young's fringes) by numerical Fourier transform. An alternative to the numerical calculation of the Fourier transform of the Young's fringes has been suggested, using a modified liquid crystal television as an optical correlator to allow the transform to be performed optically. Both transform techniques are affected by the quality of the input function, specifically the Young's fringes.This paper will compare the performance of optical and numerical Fourier transform analysis of Young's fringes using speckle images. The repeatability and an estimate of the accuracy of the particle displacement will be shown for each method. A brief examination of the effects of small particle number density of PIV evaluation will also be presented. Finally, for a small part of an actual unsteady flow, the optical and numerical Fourier transform analysis methods will be compared.  相似文献   

19.
In the last years, several techniques have been developed for the measurement of the three velocity components in a fluid plane or volume. Techniques as stereoscopic particle image velocimetry (SPIV) or tomographic PIV need a complex set-up and present serious restrictions when applied to confined liquid flows. Other like digital holographic PIV has some limitations in the particle concentration that can be measured. In this work, high-speed digital image plane holography has been applied for the measurement of the three velocity components in a complex geometry brain aneurysm model, using a two-cavity high-speed laser, one double frame camera and normal visualization, like in regular PIV. A portable and compact system has been built for adapting the high-speed laser short coherence length to the measurement of larger areas.  相似文献   

20.
 The technical basis and system set-up of a dual-plane stereoscopic particle image velocimetry (PIV) system, which can obtain the flow velocity (all three components) fields at two spatially separated planes simultaneously, is summarized. The simultaneous measurements were achieved by using two sets of double-pulsed Nd:Yag lasers with additional optics to illuminate the objective fluid flow with two orthogonally linearly polarized laser sheets at two spatially separated planes, as proposed by Kaehler and Kompenhans in 1999. The light scattered by the tracer particles illuminated by laser sheets with orthogonal linear polarization were separated by using polarizing beam-splitter cubes, then recorded by high-resolution CCD cameras. A three-dimensional in-situ calibration procedure was used to determine the relationships between the 2-D image planes and three-dimensional object fields for both position mapping and velocity three-component reconstruction. Unlike conventional two-component PIV systems or single-plane stereoscopic PIV systems, which can only get one-component of vorticity vectors, the present dual-plane stereoscopic PIV system can provide all the three components of the vorticity vectors and various auto-correlation and cross-correlation coefficients of flow variables instantaneously and simultaneously. The present dual-plane stereoscopic PIV system was applied to measure an air jet mixing flow exhausted from a lobed nozzle. Various vortex structures in the lobed jet mixing flow were revealed quantitatively and instantaneously. In order to evaluate the measurement accuracy of the present dual-plane stereoscopic PIV system, the measurement results were compared with the simultaneous measurement results of a laser Doppler velocimetry (LDV) system. It was found that both the instantaneous data and ensemble-averaged values of the stereoscopic PIV measurement results and the LDV measurement results agree well. For the ensemble-averaged values of the out-of-plane velocity component at comparison points, the differences between the stereoscopic PIV and LDV measurement results were found to be less than 2%. Received: 18 April 2000/Accepted: 2 February 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号