首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Determination of the wall slip velocity in the flow of a SBR compound   总被引:4,自引:0,他引:4  
Rubber compounds are known to exhibit slip at the wall in particular flow conditions. The slip velocity is usually determined by using the classical Mooney method. The rheological behavior of a styrene butadiene rubber (SBR) compound was studied with three different rheometers. Biconical rotational, capillary and slit die rheometers were used to define the true viscous behavior of the compound and the slip velocity. It was shown that it was impossible to apply the Mooney method to our experimental data. New characterizations were thus developed for both capillary and slit die experiments. They were based on the dependency of the slip velocity on the local flow gap. Contrarily to the Mooney method, they provided physically acceptable results and led to a power-law relationship between wall slip, wall shear stress and local geometry of the flow.  相似文献   

2.
The micro Poiseuille flow for liquid argon flowing in a nanoscale channel formed by two solid walls was studied in the present paper. The solid wall material was selected as platinum, which has well established interaction potential. We consider the intermolecular force not only among the liquid argon molecules, but also between the liquid argon atoms and the solid wall particles, therefore three regions, i.e. the liquid argon computation domain, the top and bottom solid wall regions are included for the force interaction. The present MD (Molecular Dynamics) simulation was performed without any assumptions at the wall surface. The objective of the study is to find how the flow and the slip boundaries at the wall surface are affected by the applied gravity force, or the shear rate. The MD simulations are performed in a nondimensional unit system, with the periodic boundary conditions applied except in the channel height direction. Once the steady state is reached, the macroscopic parameters are evaluated using the statistical mechanics approach. For all the cases tested numerically in the present paper, slip boundaries occur, and such slip velocity at the stationary wall surface increases with increasing the applied gravity force, or the shear rate. The slip length, which is defined as the distance that the liquid particles shall travel beyond the wall surfaces to reach the same velocity as the wall surface, sharply decreases at small shear rate, then slightly decreases with increasing the applied shear rate. We observe that the liquid viscosity remains nearly constant at small shear rates, and the Newtonian flow occurs. However, with increasing the shear rate, the viscosity increases and the non-Newtonian flow appears.  相似文献   

3.
In this paper we report rheo-optical and rheological observations made through a transparent slit die attached to a capillary rheometer. We find that the flow birefringence signal oscillates periodically near the die exit when sharkskin-like extrudate distortion is present. In contrast, steady behavior is observed in the die inland region. Specifically, the flow birefringence varies at the die exit with a period identical to that measured directly from the sharkskin extrudate. We also show that the exit flow instability leading to sharkskin can be observed directly through cross-polarizers in terms of the temporal change of the retardation order. We demonstrate that the same kind of interfacial flow instability can occur at a boundary discontinuity within the die land where the upper portion of a clean die wall meets the lower portion of a polysiloxane-coated die wall. Finally, stress relaxation upon the cessation of the slit die flow of two polybutadiene melts is studied through time-dependent flow birefringence measurements. The stress relaxation is then correlated with sharkskin time scales to describe the role of relaxation in sharkskin ridge formation. Received: 8 February 1999 Accepted: 28 July 1999  相似文献   

4.
Stokes and Couette flows produced by an oscillatory motion of a wall are analyzed under conditions where the no-slip assumption between the wall and the fluid is no longer valid. The motion of the wall is assumed to have a generic sinusoidal behavior. The exact solutions include both steady periodic and transient velocity profiles. It is found that slip conditions between the wall and the fluid produces lower amplitudes of oscillations in the flow near the oscillating wall than when no-slip assumption is utilized. Further, the relative velocity between the fluid layer at the wall and the speed of the wall is found to overshoot at a specific oscillating slip parameter or vibrational Reynolds number at certain times. In addition, it is found that wall slip reduces the transient velocity for Stokes flow while minimum transient effects for Couette flow is achieved only for large and small values of the wall slip coefficient and the gap thickness, respectively. The time needed to reach to steady periodic Stokes flow due to sine oscillations is greater than that for cosine oscillations with both wall slip and no-slip conditions.  相似文献   

5.
为了得到壁面温度在不同来流速度、不同湍流强度条件下对边界层转捩与减阻的影响规律,本文采用Transitionk-kl-ω模型对低来流速度下无压力梯度的光滑平板进行了数值模拟。结果表明,随着来流速度的升高,壁温升高所起到的减阻效果更好,即高来流速度对壁面温度更为敏感。当来流处于中高湍流强度下时,壁温升高能起到推迟转捩的作用,且随着湍流强度的升高,转捩推迟的效果越好,但减阻效果正好相反;当来流处于低湍流强度下时,壁温升高会使得转捩提前发生。壁温升高抑制了边界层内流体的脉动程度,使得层流的稳态不易被破坏,流动更加稳定;同时,壁温升高使得边界层内流体的速度梯度减小,从而降低了壁面摩擦系数,故壁温升高能起到推迟边界层转捩与减阻的作用。  相似文献   

6.
G. Mennig 《Rheologica Acta》1980,19(2):262-267
Zusammenfassung Von den Navier-Stokesschen Gleichungen ausgehend wird am Zwei-Platten-Modell für vereinfachte Bedingungen der Einfluß von Wandgleiten auf die Geschwindigkeitsprofile von Schlepp- und Druckströmung untersucht. Bei der Kombination dieser Strömungen zeigt sich, daß die für die Praxis des Extrudierens wichtigen Verweilzeiten und Geschwindigkeitsgradienten (Mischen) durch eine endliche Wandgleitgeschwindigkeit beeinflußt werden. Die Überlegungen gelten für Gleitgeschwindigkeiten, die deutlich kleiner sind als die Relativgeschwindigkeit der Platten.
Summary For the simple case of an incompressible Newtonian fluid between parallel plates the influence of wall slip on drag flow and pressure flow has been studied (steady isothermal flow). It can be shown that for the combination of drag and pressure flow the velocity at the wall influences the residence time as well as the velocity gradient, both being of importance in extrusion. The theoretical considerations are valid for comparatively small slip velocities only.


Mit 7 Abbildungen und 1 Tabelle  相似文献   

7.
This paper reports experimental observations and numerical simulations relating to sharkskin extrusion instabilities for two different types of polyethylene, a metallocene high-density polyethylene (HDPE) and a linear low-density polyethylene (LLDPE). Experimental results are presented for both the effect of die exit curvature and die surface roughness for slit die geometry. Matching polyflow numerical simulations are also reported and are shown to be qualitatively consistent with experimental observations. The onset of the sharkskin instability is correlated with the magnitude of the stress concentration at the die exit, and is found to be sensitive to both the melt/wall separation point for a curved exit die, and the level of partial slip at the die wall. Additional observations on the effect of a fluoropolymer additive also support the sensitivity of the sharkskin instability to partial slip at the wall.  相似文献   

8.
Analytical solutions are derived for various start-up Newtonian Poiseuille flows assuming that slip at the wall occurs when the wall shear stress exceeds a critical value, known as the slip yield stress. Two distinct regimes characterise the steady axisymmetric and planar flows, which are defined by a critical value of the pressure gradient. If the imposed pressure gradient is below this critical value, the classical no-slip, start-up solution holds. Otherwise, no-slip flow occurs only initially, for a finite time interval determined by a critical time, after which slip does occur. For the annular case, there is an additional intermediate (steady) flow regime where slip occurs only at the inner wall, and hence, there exist two critical values of the pressure gradient. If the applied pressure gradient exceeds both critical values, the velocity evolves initially with no-slip at both walls up to the first critical time, then with slip only along the inner wall up to the second critical time and finally with slip at both walls.  相似文献   

9.
Sharkskin instabilities and the effect of slip from gas-assisted extrusion   总被引:4,自引:0,他引:4  
This paper is concerned with a polymer extrusion instability and the effect of introducing slip by means of a thin lubricating gas layer between the extrusion die wall and the flowing polymer melt. Gas-assisted extrusion (GAE) experiments were carried out using high-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE) for a number of different gas injection die geometries. The stress distributions within the polymer melt were monitored during extrusion using flow birefringence. Polyflow numerical simulations were used to calculate the local stress concentrations in the melt at the die exit, as these were believed to be related to the occurrence of sharkskin. Simulations were also used to observe the effect of a full slip boundary condition as imparted by GAE. A key finding of the paper is that GAE in the parallel section of the die wall simply moved the local exit stress concentration upstream to the point of gas injection, and therefore did not reduce sharkskin. Simulations indicated that for correctly designed dies, the local surface stress concentration would be reduced. However, it was found experimentally that it was not possible to obtain a stable gas layer for this die design with upstream gas injection. A numerical investigation, involving simulations of varying levels of partial slip along the die wall, indicated an optimum level of slip where the stress concentrations were reduced. It is speculated that this is the reason that coatings such as PTFE, which impart a partial slip, can reduce sharkskin while GAE does not. The findings show that a controlled level of partial slip lowers the overall stress concentrations.  相似文献   

10.
We consider the time-dependent shear flow of an Oldroyd-B fluid with slip along the fixed wall. Slip is allowed by means of a generic slip equation predicting that the shear stress is a non-monotonic function of the velocity at the wall. The complete one-dimensional stability analysis to one-dimensional disturbances is carried out and the corresponding neutral stability diagrams are constructed. Asymptotic results for large values of the elasticity number and finite element calculations are also presented. The instability regimes are within or coincide with the negative-slope regime of the slip equation. The numerical calculations agree with the linear stability results when the size of the initial perturbation is small. Large perturbations may destabilize a linearly stable steady state, leading to a periodic solution. The period and the amplitude of the periodic solutions increase with elasticity. Received: 19 June 1997 Accepted: 22 September 1997  相似文献   

11.
We explore a mechanism of extrusion instability, based on the combination of nonlinear slip and compressibility. We consider the time-dependent compressible Newtonian extrudate swell problem with slip at the wall. Steady-state solutions are unstable in regimes where the shear stress is a decreasing function of the velocity at the wall. Compressibility provides the means for the alternate storage and release of elastic energy, and, consequently, gives rise to periodic solutions. The added novelty in the present work is the assumption of periodic volumetric flow rate at the inlet of the die. This leads to more involved periodic responses and to free surface oscillations similar to those observed experimentally with the stick-slip instability. To numerically simulate the flow, we use finite elements in space and a fully-implicit scheme in time.Dedicated to the memory of Prof. Tasos Papanastasiou  相似文献   

12.
The instability and regular nonlinear waves in the film of a heavy viscous liquid flowing along the wall of a round tube and interacting with a gas flow are investigated. The solutions for the wave film flows are numerically obtained in the regimes from free flow-down in a counter-current gas stream to cocurrent upward flow of the film and the gas at fairly large gas velocities. Continuous transition from the counter-current to the cocurrent flow via the state with a maximum amplitude of nonlinear waves and zero values of the liquid flow rate and the phase velocity is investigated. The Kapitsa-Shkadov method is used to reduce a boundary value problem to a system of evolutionary equations for the local values of the layer thickness and the liquid flow rate.  相似文献   

13.
We solve analytically the cessation flows of a Newtonian fluid in circular and plane Couette geometries assuming that wall slip occurs provided that the wall shear stress exceeds a critical threshold, the slip yield stress. In steady-state, slip occurs only beyond a critical value of the angular velocity of the rotating inner cylinder in circular Couette flow or of the speed of the moving upper plate in plane Couette flow. Hence, in cessation, the classical no-slip solution holds if the corresponding wall speed is below the critical value. Otherwise, slip occurs only initially along both walls. Beyond a first critical time, slip along the fixed wall ceases, and beyond a second critical time slip ceases also along the initially moving wall. Beyond this second critical time no slip is observed and the decay of the velocity is faster. The velocity decays exponentially in all regimes and the decay is reduced with slip. The effects of slip and the slip yield stress are discussed.  相似文献   

14.
Using the Laser doppler technique we report experimental velocity profile measurements of molten polyethylene flowing into a slit die. Our experimental measurements are restricted to the centreline of the flow and three transverse sections within the slit. The results indicate that with the exception of a high flowrate centreline velocity overshoot, the normalised velocity profiles are relatively insensitive to both temperature, polymer grade and flowrate.We have also carried out an analysis and simulation to establish the effect on velocity measurements of both velocity gradients and solid boundaries within the probe volume of the intersecting laser beams used to measure the velocity profiles. Our results indicate that for our own experimental conditions we might expect to measure a finite velocity at the wall and that the presence of velocity gradients will not significantly effect the time dependence of the auto correlogram.  相似文献   

15.
Shear and extensional viscosities and wall slip are determined simultaneously under extrusion processing conditions using an on-line rheometer. Because it is not possible to independently control flow rate and temperature, classical methods for interpretation of capillary data cannot be used with on-line rheometry. This limitation is overcome using computational optimization to fit parameters in a flow model. This consists of three parts, representing shear viscosity, extensional viscosity, and wall slip. Three-parameter, power law forms, based on local instantaneous deformation rates and including temperature dependence, are used for each, and analytic solutions applied for entry flow and flow in the capillary. For entry flow, the Cogswell–Binding approach is used, and for developed flow in the capillary a solution incorporating wall slip is derived. The rheometer, with interchangeable capillaries, is mounted in place of the die on a rubber profile extrusion line. Pressure drops and temperatures for extrusion of an EPDM rubber through 2 mm diameter capillaries of length 0, 2, 3, 4, and 5 mm are logged and flow rates determined for a range of extruder speeds (5 to 20 rpm). Pressures ranged from 60 to 75 bar and temperatures from 86 to 116 °C. Mean flow velocity in the capillaries was between 5 × 10−3 and 5 × 10−1 m s−1. The nine material parameters are optimized for best fit of the analytic pressure drops to experimental data, using about 100 data points, with the Levenberg–Marquardt method. It is concluded that flow is dominated by extension and wall slip. Shear flow appears to play little part. The slip model indicates that slip velocity increases much more rapidly than the wall shear stress (in the range 0.5–1 MPa) and decreases with temperature for a given stress level. Results for the (uniaxial) extensional viscosity represent an engineering approximation to this complex phenomenon at the high strains (approximately 200) and high extension rates (up to 800 s−1) applying in the extrusion. Results indicate a slight extension hardening and a decrease with temperature. Results are put into the context of the available studies in the literature, which, particularly with regard to wall-slip and extensional flow, consider conditions far removed from those applying in industrial extrusion. The present methods provide a powerful means for flow characterization under processing conditions, providing data suitable for use in computer simulations of extrusion and optimization of die design.  相似文献   

16.
The steady, pressure-driven flow of a Herschel-Bulkley fluid in a microchannel is considered, assuming that different power-law slip equations apply at the two walls due to slip heterogeneities, allowing the velocity profile to be asymmetric. Three different flow regimes are observed as the pressure gradient is increased. Below a first critical pressure gradient G 1, the fluid moves unyielded with a uniform velocity, and thus, the two slip velocities are equal. In an intermediate regime between G 1 and a second critical pressure gradient G 2, the fluid yields in a zone near the weak-slip wall and flows with uniform velocity near the stronger-slip wall. Beyond this regime, the fluid yields near both walls and the velocity are uniform only in the central unyielded core. It is demonstrated that the central unyielded region tends towards the midplane only if the power-law exponent is less than unity; otherwise, this region rends towards the weak-slip wall and asymmetry is enhanced. The extension of the different flow regimes depends on the channel gap; in particular, the intermediate asymmetric flow regime dominates when the gap becomes smaller than a characteristic length which incorporates the wall slip coefficients and the fluid properties. The theoretical results compare well with available experimental data on soft glassy suspensions. These results open new routes in manipulating the flow of viscoplastic materials in applications where the flow behavior depends not only on the bulk rheology of the material but also on the wall properties.  相似文献   

17.
In this paper the effects of hydrophobic wall on skin-friction drag in the channel flow are investigated through large eddy simulation on the basis of weaklycompressible flow equations with the MacCormack's scheme on collocated mesh in the FVM framework. The slip length model is adopted to describe the behavior of the slip velocities in the streamwise and spanwise directions at the interface between the hydrophobic wall and turbulent channel flow. Simulation results are presented by analyzing flow behaviors over hydrophobic wall with the Smagorinky subgrid-scale model and a dynamic model on computational meshes of different resolutions. Comparison and analysis are made on the distributions of timeaveraged velocity, velocity fluctuations, Reynolds stress as well as the skin-friction drag. Excellent agreement between the present study and previous results demonstrates the accuracy of the simple classical second-order scheme in representing turbulent vertox near hydrophobic wall. In addition, the relation of drag reduction efficiency versus time-averaged slip velocity is established. It is also foundthat the decrease of velocity gradient in the close wall region is responsible for the drag reduction. Considering its advantages of high calculation precision and efficiency, the present method has good prospect in its application to practical projects.  相似文献   

18.
The exact solutions for the viscous fluid through a porous slit with linear ab-sorption are obtained. The Stokes equation with non-homogeneous boundary conditions is solved to get the expressions for the velocity components, pressure distribution, wall shear stress, fractional absorption, and leakage flux. The volume flow rate and mean flow rate are found to be useful in obtaining a convenient form of the longitudinal velocity component and pressure difference. The points of the maximum velocity components for a fixed axial distance are identified. The value of the linear absorption parameter is ran-domly chosen, and the rest available data of the rat kidney to the tabulate pressure drop and fractional absorption are incorporated. The effects of the linear absorption, uniform absorption, and flow rate parameters on the flow properties are discussed by graphs. It is found that forward flow occurs only if the volume flux per unit width is greater than the absorption velocity throughout the length of the slit, otherwise back flow may occur. The leakage flux increases with the increase in the linear absorption parameter. Streamlines are drawn to help the analysis of the flow behaviors during the absorption of the fluid flow through the renal tubule and purification of blood through an artificial kidney.  相似文献   

19.
A dilute fiber suspension in a turbulent channel with a backward-facing step is investigated by means of Feature Tracking. Its combination with a phase-discrimination methodology, which is described in detail, allows simultaneous and separate measurement of carrier and dispersed phases velocity fields, the orientation and rotation rate of fibers as well as the fiber–fluid translational and rotational slip velocities. The patterns of fibers concentration, angular velocity and the probability distribution of fibers velocity appear to be dominated by the mechanical interactions with the wall and the local high shear rather than by near-wall turbulent structures. The translational slip velocity obtained from instantaneous data shows that fibers move faster than the surrounding fluid inside the buffer layer, the velocity gap reducing gradually when approaching the channel centerline. On the other hand, the rotational slip profile suggests a gradual decoupling of the translational and rotational dynamics. Downstream of the step, the excess of streamwise velocity displayed by fibers is still observed and extends in the free-shear region, whereas the rotation rate slip decreases at a relatively short distance from the step, as the effect of the wall presence fades away.  相似文献   

20.
The influence of extrusion under strong slip conditions on the extensional properties of linear low-density polyethylene was studied in this work. The material was extruded at two different temperatures under strong slip and no slip conditions, and was subsequently subjected to uniaxial elongational flow by means of a Rheotens device. Strong slip was evident through the elimination of sharkskin distortions and the stick-slip instability, as well as by the electrification of the extrudates. The extrudate swell was smaller in the presence of slip when comparing with no slip conditions at constant apparent shear rate, but it was found to be a unique function of the shear stress if comparison was performed at constant stress. The draw ratio and melt strength of the filaments obtained under slip conditions were larger compared to those without slip. In addition, draw resonance was postponed to higher draw ratios during the extrusion with strong slip at constant apparent shear rate. It is suggested that slip of the polymer at the die wall decreases the shear stress in the bulk, and therefore, restricts the disentanglement and orientation of macromolecules during flow, which subsequently produces the increase in draw ratio and melt strength during stretching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号