首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The European Union regulated the use of non-steroidal anti-inflammatory drugs (NSAIDs) in animal production and set the official analytical controls to detect their residues in plasma, serum, and milk within the frame of national monitoring programs in each member state. In this work, a multi-residue reversed-phase high-performance liquid chromatography with diode array detector (DAD) method is described for the simultaneous determination of 13 NSAIDs in serum and plasma of farm animals. Chromatographic separation by a C12 stationary phase column with a linear gradient is able to resolve all the compounds considered: salicylic acid, ketoprofen, flurbiprofen, phenylbutazone and its metabolite (oxyphenbutazone), carprofen, ibuprofen, naproxen, niflumic acid, suxibutazone, diclofenac, mefenamic acid, and tolfenamic acid. These compounds are chosen as the most representative of the different NSAID chemical sub-classes. The DAD analysis allows the confirmation of all drugs on the basis of their own UV-vis spectrum, according to the requirements of the European Council Decision 2002/657/EC. Moreover, the method is in-house validated, evaluating mean recoveries, specificity, repeatability, and within-laboratory reproducibility as the performance parameters required by the Decision. The results of this study indicate the method is specific and repeatable, with the mean percentage recoveries of the drugs ranging between 72.5% and 104.5%. Only salicylic acid has poor recovery, with results ranging between 36.3% and 54.9%.  相似文献   

2.
《Electroanalysis》2006,18(22):2202-2209
A simple and rapid method has been developed for the analysis of four nonsteroidal anti‐inflammatory drugs (NSAIDs) in serum using microchip capillary electrophoresis with pulsed amperometric detection. The selected NSAIDs (salicylic acid, acetaminophen, diflunisal, and diclofenac) are among the most commonly used drugs to treat fever, inflammation, and pain. Used above the therapeutic levels, these drugs can cause a wide variety of adverse effects and their fast analysis could have a significant impact in treatment and recovery of the patients. Several conditions, including separation potential, pH, and concentration of the electrolyte solution were studied to optimize the separation and detection. In this study, salicylic acid, acetaminophen, diflunisal, and diclofenac were separated in less than 2 minutes using a 5 mM borate buffer at pH 11.5 and a separation potential of +1200 V. Linear relationships were obtained between the concentration and peak current in the 0.5–15.3 μg/mL range and detection limits around 0.26 μg/mL. After 30 consecutive injections, the stability of both the response and migration time of the analytes showed relative related deviations of less than 4.6% and 1.0%, respectively. The potential of this method was verified by spiking a bovine serum sample with the four NSAIDs and analyzing the recovery ratio.  相似文献   

3.
Non-steroidal anti-inflammatory drugs are widely used for treatment of animals. According to Council Directive 96/23/EC, residues of these drugs must be monitored because of the potential risk they pose to the consumers' health. For this reason an LC-MS-MS method was developed for detection of wide range of NSAIDs, including both "acidic" NSAIDs (carprofen, diclofenac, flunixin, meloxicam, phenylbutazone, oxyphenbutazone, tolfenamic acid, mefenamic acid, naproxen, ketoprofen, ibuprofen, firocoxib, rofecoxib, and celecoxib) and "basic" NSAIDs (four metamizole metabolites). Analytes were extracted from milk samples with acetonitrile in the presence of ammonium acetate. One portion of the extract was directly analyzed for the presence of metamizole metabolites; a second portion was cleaned with an amino cartridge. All NSAIDs were separated on a Phenomenex Luna C8(2) column and analyzed by LC-MS-MS in negative (acidic NSAIDs) and positive (metamizole metabolites) ion modes. The method was validated in accordance with the requirements of Commission Decision 2002/657/EC. Within-laboratory reproducibility was in the range 7-28%, and accuracy was in the range 71-116%. The method enabled detection of all the analytes with the expected sensitivity, below the recommended concentrations. The method fulfills the criteria for confirmatory methods and, because of its efficiency, may also be used for screening purposes. The procedure was also successfully verified in the proficiency test organized by EU-RL in 2010. As far as the authors are aware, this is one of the first methods capable of detecting diclofenac residues below the MRL in milk (0.1 μg kg(-1)). An additional advantage is the possibility of simultaneous determination of "acidic" NSAIDs and metamizole metabolites.  相似文献   

4.
The European Council Decision 2002/657/EC established that group B substances detected in foods must be identified and confirmed on the basis of their molecular structure. To this aim, we have developed a panel of methods for unambiguous determination of sixteen non-steroidal anti-inflammatory drugs (NSAIDs) in cattle and buffalo raw milk. A multi-residue reversed-phase high-performance liquid chromatography method with photodiode array detection is described for quantitative screening analysis. For confirmatory purposes, two multi-residue reversed-phase ion trap liquid chromatography/electrospray ionisation tandem mass spectrometry (LC/ESI-MS/MS) methods were developed: the former to identify salicylic acid, naproxen, carprofen, flurbiprofen, ibuprofen, meclofenamic acid, niflumic acid, flunixin and its metabolite 5-hydroxyflunixin in the negative ion mode; the latter to identify ketoprofen, suxibutazone, diclofenac, mefenamic acid, tolfenamic acid, phenylbutazone and its metabolite oxyphenbutazone in the positive ion mode. These drugs are representative of different subclasses of NSAIDs not chemically related. The methods were in-house validated, evaluating specificity and calculating the mean recoveries, repeatability, within-laboratory reproducibility, and limits of quantification. For all the NSAIDs, apart from salicylic acid and 5-hydroxyflunixin, mean recoveries ranging between 69.0% and 96.7% were measured. The qualitative identification of all drugs was attained by their MS/MS spectra in the concentration range studied. Similarly, at 5 microg/kg all NSAIDs, apart from flurbiprofen, were unambiguously confirmed.  相似文献   

5.
In the present work, a new supported liquid membrane (SLM) has been developed for on‐chip electromembrane extraction of acidic drugs combined with HPLC or CE, providing significantly higher stability than those reported up to date. The target analytes are five widely used non‐steroidal anti‐inflammatory drugs (NSAIDs): ibuprofen (IBU), diclofenac (DIC), naproxen (NAX), ketoprofen (KTP) and salicylic acid (SAL). Two different microchip devices were used, both consisted basically of two poly(methyl methacrylate) (PMMA) plates with individual channels for acceptor and sample solutions, respectively, and a 25 µm thick porous polypropylene membrane impregnated with the organic solvent in between. The SLM consisting of a mixture of 1‐undecanol and 2‐nitrophenyl octyl ether (NPOE) in a ratio 1:3 was found to be the most suitable liquid membrane for the extraction of these acidic drugs under dynamic conditions. It showed a long‐term stability of at least 8 hours, a low system current around 20 µA, and recoveries over 94% for the target analytes. NPOE was included in the SLM to significantly decrease the extraction current compared to pure 1‐undecanol, while the extraction properties was almost unaffected. Moreover, it has been successfully applied to the determination of the target analytes in human urine samples, providing high extraction efficiency.  相似文献   

6.
A rapid and reliable LC-MS/MS method for the simultaneous confirmation of twelve non steroidal anti-inflammatory drugs (NSAIDs) in bovine milk was developed and fully validated in accordance with the European Commission Decision 2002/657/EC. The validation scheme was built in accordance with the MRLs or target analytical levels (EU-CRL recommended concentrations and detection capabilities) of the analytes, except for diclofenac for which the lower level of validation achieved was 0.5 μg kg(-1) whereas its MRL is 0.1 μg kg(-1). The NSAIDs investigated were as follows: phenylbutazone (PBZ), oxyphenylbutazone (OPB), naproxen (NP), mefenamic acid (MF), vedaprofen (VDP), flunixin (FLU), 5-hydroxyflunixin (FLU-OH), tolfenamic acid (TLF), meloxicam (MLX), diclofenac (DC), carprofen (CPF) and ketoprofen (KTP). Several extraction procedures had been investigated during the development phase. Finally, the best results were obtained with a procedure using only methanol as the extraction solvent, with an evaporation step included and no further purification. Chromatographic separation was achieved on a C18 analytical column and the run was split in 2 segments. Matrix effects were also investigated. Data acquisition implemented for the confirmatory purpose was performed by monitoring 2 MRM transitions per analyte under the negative electrospray mode. Mean relative recoveries ranged from 94.7% to 110.0%, with their coefficients of variation lying between 2.9% and 14.7%. Analytical limits expressed in terms of decision limits (CCα) were evaluated between 0.69 μg kg(-1) (FLU) and 27.54 μg kg(-1) (VDP) for non-MRL compounds, and at 0.10 (DC), 15.37 (MLX), 45.08 (FLU-OH), and 62.96 μg kg(-1) (TLF) for MRL compounds. The validation results proved that the method is suitable for the screening and confirmatory steps as implemented for the French monitoring plan for NSAID residue control in bovine milk.  相似文献   

7.
Consumption of non-steroidal anti-inflammatory drugs (NSAIDs) is increasing and with it the danger of environmental pollution by pharmaceutical residues. Publications regarding NSAIDs in the environment not only show that they are toxic to many animal species, but also highlight the need for robust analytical methods for monitoring the level of such contaminants in environmental matrices. In our study we selected the four most widely used NSAIDs in Slovenia and Central Europe, ibuprofen, naproxen, ketoprofen and diclofenac, and studied their extraction from sediment samples. We examined several extraction techniques (ultrasonic extraction, Soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and microwave-assisted extraction) using a spiked sediment sample and determined optimal extraction conditions. After extraction we applied a clean-up step, derivatisation of the analytes and gas chromatography with mass spectrometric detection (GC-MSD) and selected the most appropriate extraction procedure. The optimised analytical method chosen for analysis of sediment samples consisted of microwave-assisted extraction, clean-up of the extract with SPE, derivatisation with MSTFA and determination with GC-MSD. The optimised procedure was applied to the analysis of two environmental river samples taken from the vicinity of Novo mesto, the biggest town in the south eastern part of Slovenia with 62,000 inhabitants, a hospital and a pharmaceutical factory in its vicinity. While analysis of the sample taken upstream of the town showed no detectable amounts of NSAIDs, analysis of samples taken downstream showed quantifiable levels of two of the studied NSAIDs (naproxen and ketoprofen). Besides these two NSAIDs, river water samples sampled at the same time and location on the River Krka also showed the presence of diclofenac. Sampling on the River Krka and other Slovene rivers will in the future be repeated at different sampling points in order to track down the main sources of pollution.  相似文献   

8.
An experimental design optimization is reported of an analytical procedure used in the simultaneous determination of seven non-steroidal anti-inflammatory drugs (NSAIDs) in bovine milk by gas chromatography with mass spectrometry detection (GC-MS). This analytical procedure involves a solid-phase microextraction (SPME) step and an aqueous derivatization procedure of the NSAIDs to ethyl esters in bovine milk. The following NSAIDs are studied: ibuprofen (IBP), naproxen (NPX), ketoprofen (KPF), diclofenac (DCF), flufenamic acid (FLF), tolfenamic acid (TLF) and meclofenamic acid (MCL). Three kinds of SPME fibers - polyacrylate (PA), polydimethylsiloxane/divinylbenzene (PDMS/DVB) and polydimethylsiloxane (PDMS) - are compared to identify the most suitable one for the extraction process, on the basis of two steps: to determine the equilibrium time of each fiber and to select the fiber that provides the best figures-of-merit values calculated with three-way PARAFAC-based calibration models at the equilibrium time. The best results were obtained with the PDMS fiber. Subsequently, 8 experimental factors (related to the derivatization reaction and the SPME) were optimized by means of a D-optimal design that involves only 14 rather than 512 experiments in the complete factorial design. The responses used in the design are the sample mode loadings of the PARAFAC decomposition which are related to the quantity of each NSAID that is extracted in the experiment. Owing to the fact that each analyte is unequivocally identified in the PARAFAC decomposition, a calibration model is not needed for each experimental condition. The procedure fulfils the performance requirements for a confirmatory method established in European Commission Decision 2002/657/EC.  相似文献   

9.
The European Union has regulated the use of non-steroidal anti-inflammatory drugs (NSAIDs) in animal production and requires its member states to detect their residues in different matrices. In this work, a detailed MS and MS/MS study by ion-trap mass spectrometry of fourteen NSAIDs is described. Two multi-residue reversed-phase LC/ESI-MS/MS methods were developed, one for the determination of salicylic acid, naproxen, carprofen, flurbiprofen, ibuprofen, niflumic acid and meclofenamic acid in the negative ion mode, and the other for the determination of ketoprofen, suxibutazone, diclofenac, mefenamic acid, tolfenamic acid, phenylbutazone and its metabolite oxyphenbutazone in the positive ion mode. It was thus possible to confirm up to 14 different NSAID residues in serum and plasma samples of farmed animals, after chromatographic separation by a linear gradient. These substances were chosen as representative of different chemical subclasses of NSAIDs. The two methods were also validated in-house at three contamination levels, evaluating specificity and calculating mean recoveries, repeatability and within-laboratory reproducibility. The MS/MS product ion spectra were successfully used for the qualitative identification of all the drugs tested. All the NSAIDs, apart from salicylic acid, were recovered in high amounts, ranging between 71.6% and 100.9%.  相似文献   

10.
A simple adsorption/desorption procedure using a mixed matrix membrane (MMM) as extraction medium is demonstrated as a new miniaturized sample pretreatment and preconcentration technique. Reversed-phase particles namely polymeric bonded octadecyl (C18) was incorporated through dispersion in a cellulose triacetate (CTA) polymer matrix to form a C18-MMM. Non-steroidal anti-inflammatory drugs (NSAIDs) namely diclofenac, mefenamic acid and ibuprofen present in the environmental water samples were selected as targeted model analytes. The extraction setup is simple by dipping a small piece of C18-MMM (7 mm × 7 mm) in a stirred 10 mL sample solution for analyte adsorption process. The entrapped analyte within the membrane was then desorbed into 100 μL of methanol by ultrasonication prior to high performance liquid chromatography (HPLC) analysis. Each membrane was discarded after single use to avoid any analyte carry-over effect. Several important parameters, such as effect of sample pH, salting-out effect, sample volume, extraction time, desorption solvent and desorption time were comprehensively optimized. The C18-MMM demonstrated high affinity for NSAIDs spiked in tap and river water with relative recoveries ranging from 92 to 100% and good reproducibility with relative standard deviations between 1.1 and 5.5% (n = 9). The overall results obtained were found comparable against conventional solid phase extraction (SPE) using cartridge packed with identical C18 adsorbent.  相似文献   

11.
The increase in the production and consumption of pharmaceuticals increases their presence in the global environment, which may result in direct threats to living organisms. For this reason, there is a need for new methods to analyze drugs in environmental samples. Here, a new procedure for separating and determining selected drugs (diclofenac, ibuprofen, and carbamazepine) from bottom sediment and water samples was developed. Drugs were determined by ultra-high performance liquid chromatography coupled with an ultraviolet detector (UHPLC-UV). In this work, a universal and single-step sample treatment, based on supramolecular solvents (SUPRAS), was proposed to isolate selected anticonvulsants and nonsteroidal anti-inflammatory drugs (NSAIDs) from sediment samples. The following parameters were experimentally selected: composition of the supramolecular solvent (composition THF:H2O (v/v), amount of decanoic acid), volume of extractant, sample mass, extraction time, centrifugation time, and centrifugation speed. Finally, the developed procedure was validated. A Speedisk procedure was also developed to extract selected drugs from water samples. The recovery of analytes using the SUPRAS procedure was in the range of 88.8–115%, while the recoveries of the Speedisk solid-phase extraction procedure ranged from 81.0–106%. The effectiveness of the sorption of the tested drugs by sediment was also examined.  相似文献   

12.
In this work, the traditional liquid phase microextraction (LPME) has been miniaturized into a microfluidic device (μLPME) where liquid phase microextraction is combined with an HPLC procedure. This integration enables extraction and determination of acid drugs by μLPME and HPLC, respectively. The analytes selected for the test are five widely used non-steroidal anti-inflammatory drugs (NSAIDs): salicylic acid (SAC), ketoprofen (KTP), naproxen (NAX), diclofenac (DIC) and ibuprofen (IBU). They have successfully been detected in biological (urine and saliva) and environmental (lake and river water) samples with excellent clean up, high extraction efficiency and good enrichment factor under stopped-flow conditions. The μLPME consists of two small channels (acceptor and donor channel) separated by a support liquid membrane and has been implemented to allow a simple membrane replacement an arbitrary number of times. The sample (pH 12) and acceptor phase (pH 1.5) are delivered to the μLPME at 1 μL min−1 flow rate and the extraction is completed after 6 min. Under these conditions, the recoveries obtained in urine samples are over 87% for all compounds. For environmental water analysis, different types of water samples have been analyzed obtaining recoveries over 75% for all compounds. The sample consumption is dramatically decreased (<7 μL) as compared to traditional LPME. This confirms the advantages of the here proposed μLPME when using small volume/high cost samples. Finally, when the acceptor flow is turned off during the extraction time, high enrichment factor significantly increases with the extraction time for all compounds. As an example, the IBU is enriched by a factor of 75 after 25 min extraction consuming only 500 μL of sample.  相似文献   

13.
A multi-residue liquid chromatography/tandem mass spectrometry method (LC/MS2) was developed for the detection of the non-steroidal anti-inflammatory drugs acetylsalicylic acid (via the marker residue salicylic acid), flunixin, phenylbutazone, tolfenamic acid, meloxicam and ketoprofen, in bovine muscle. After extraction of the bovine muscle with acetonitrile, the cleanup was performed using a Oasis HLB column. The evaporated eluate was reconstituted and analysed by LC/MS2. To obtain optimal detection of salicylic acid and phenylbutazone, the ion trap mass spectrometric parameters activation q and maximum ion injection time, respectively, were optimised. The activation q for salicylic acid was increased to obtain reliable detection of both salicylic acid and its product ion. The maximum ion injection time for the time segment containing phenylbutazone was decreased since there were not enough scans across the chromatographic peak of this compound. The multi-residue method was able to detect the different analytes below or at the maximum residue limit (MRL) or minimum required performance limit (MRPL) or, in the case of phenylbutazone and ketoprofen, at 100 and 20 microg kg(-1), respectively.  相似文献   

14.
Avermectines are antiparasitic agents widely used as veterinary drugs for food producing animals. The European Community, due to their side effects, limited the use of these molecules establishing maximum residue limits (MRLs) in some foods. A validated qualitative and quantitative high performance liquid chromatography method with fluorescence detection (HPLC-FL) is presented for the simultaneous determination of ivermectin (IVM), abemectin (ABA), moxidectin (MOX), eprinomectin (EPR), doramectin (DOR) and emamectin (EMA) in foodstuffs (muscle, eggs and milk). Samples were extracted with acetonitrile, purified with liquid-liquid extraction (LLE), and analysed by HLPC-FL previous derivatization with trifluoroacetic anhydride (TFAA) in presence of 1-methyl-imidazole (MI) and acetic acid. To date, the presented method is the first validated for the matrix eggs, and in accordance with the requirements set by Commission Decision 2002/657/EC. Recoveries of the methods, calculated spiking the samples in the range 5.0-100.0 μg kg(-1), were 64-83% for muscle, 65-89% for milk and 63-84% for eggs. The precision (CV) ranged between 9.2 and 17.1% for muscle, 9.9 and 16.6% for milk and from 9.4 to 17.4% for eggs. Linearity for the six analytes was calculated from 5.0 to 200.0 μg kg(-1). The main advantages of the presented method are its rapidity, the specificity, the good precision and recovery that make it very suitable to the detection and determination of avermectines.  相似文献   

15.
In this paper, an electromembrane extraction (EME) combined with a HPLC procedure using diode array (DAD) and fluorescence detection (FLD) has been developed for the determination of six widely used non-steroidal anti-inflammatory drugs (NSAIDs): salicylic acid (SAC), ketorolac (KTR), ketoprofen (KTP), naproxen (NAX), diclofenac (DIC) and ibuprofen (IBU). The drugs were extracted from basic aqueous sample solutions, through a supported liquid membrane (SLM) consisting of 1-octanol impregnated in the walls of a S6/2 Accurel® polypropylene hollow fiber, and into a basic aqueous acceptor solution resent inside the lumen of the hollow fiber with a potential difference of 10 V applied over the SLM. Extractions that were carried out in 10 min using a potential of 10 V from pH 12 NaOH aqueous solutions shown concentration enrichments factors of 28-49 in a pH 12 NaOH aqueous acceptor solution. The proposed method was successfully applied to urban wastewaters. Excellent selectivity was demonstrated as no interfering peaks were detected. The procedure allows very low detection and quantitation limits of 0.0009-9.0 and 0.003-11.1 μg L−1, respectively.  相似文献   

16.
The release profiles of model drugs (propranolol HCl, diclofenac sodium, salicylic acid and sulfasalazine) from low molecular weight poly(d,l-lactic acid) [d,l-PLA] tablets immersed in buffer solutions were investigated in an attempt to explore the mechanism of the related phenomena. It was confirmed that drug release is controlled by diffusion through the polymer matrix and by the erosion of the polymer. The pH of the surrounding medium influences the drug solubility as well as swelling and degradation rate of the polymer and therefore the overall drug release process. Physicochemical interaction between d,l-PLA and drug is an additional factor which influences the degree of matrix swelling and therefore its porosity and diffusion release process. Propranolol HCl shows extended delivery time at both examined pH values (5.4 and 7.4) and especially at pH 7.4 where release was accomplished in 190 days, most probably due to its decreased solubility at higher pH values. The acidic drugs gave shorter delivery times especially at pH 7.4. A slower drug release rate and more extended delivery time at pH 7.4 in comparison with that at pH 5.4 was recorded for tablets loaded with diclofenac sodium and salicylic acid. The opposite effect was observed with samples loaded with propranolol HCl.  相似文献   

17.
The present study documents development and validation of a novel approach for determination of 23 perfluorinated alkylated substances (PFASs) in food of animal origin represented by milk and fish. The list of target analytes comprises four classes of PFASs, both ionic and non-ionic: 11 perfluorocarboxylic acids (PFCAs), 4 perfluorosulphonic acids (PFSAs), 5 perfluorosulphonamides (FOSAs) and 3 perfluorophosphonic acids (PFPAs). Fast sample preparation procedure is based on an extraction of target analytes with acetonitrile (MeCN) and their transfer (supported by inorganic salts and acidification) into the organic phase. Removing of matrix co-extracts by a simple dispersive solid phase extraction (SPE) employing ENVI-Carb and C18 sorbents is followed by an efficient sample pre-concentration performed by acetonitrile evaporation and subsequent dilution of residue in a small volume of methanol (matrix equivalent in the final extracts was 16 and 8 g mL(-1), for milk and fish respectively). Using modern instrumentation consisting of ultra-high performance liquid chromatography (UHPLC) hyphenated with a tandem mass spectrometer (MS/MS), limits of quantification (LOQs) as low as 0.001-0.006 μg kg(-1) for milk and 0.002-0.013 μg kg(-1) for fish can be achieved. Under these conditions, a wide spectrum of PFASs, including minor representatives, can be determined which enables collecting data required for human exposure studies. The pilot study employing the new method for examination of milk and canned fish samples was realized. Whereas in majority of canned fish products a wide spectrum of PFCAs, perfluorooctanesulphonic acid (PFOS) and perfluoro-1-octanesulphonamide (PFOSA) was detected, only in a few milk samples very low concentrations (LOQ levels) of PFOS and perfluorooctansulphonic acid (PFDS) were found.  相似文献   

18.
In this study, a simplified method for the extraction and determination of seven fluoroquinolone residues (danofloxacin, difloxacin, enrofloxacin, marbofloxacin, orbifloxacin, ofloxacin, and sarafloxacin) and three quinolones (oxolinic acid, flumequine, and nalidixic acid), in porcine muscle, table eggs, and commercial whole milk, which required no cleanup step, was devised. This procedure involves the extraction of analytes from the samples via liquid‐phase extraction, and the subsequent quantitative determination was accomplished via LC‐fluorescence detection. Analyte separation was successfully conducted on an XBridge‐C18 column, with a linear gradient mobile phase composed of acetonitrile and 0.01 M oxalic acid buffer at pH=3.5. The one‐step liquid‐liquid extraction method evidenced good selectivity, precision (RSDs=0.26–15.07%), and recovery of the extractable analytes, ranging from 61.12 to 115.93% in matrices. The LOQs ranged from 0.3 to 25 μg/kg. A survey of ten samples purchased from local markets was conducted, and none of the samples harbored fluoroquinolone residues. This method is an improvement over existing methodologies, since no additional cleanup was necessary.  相似文献   

19.
A sensitive and specific liquid chromatographic–tandem mass spectrometric (LC–MS–MS) method for most of those penicillins and cephalosporins for which EU maximum residue limits (MRL) were set in Council regulation (EEC) 2377/90 was developed and validated in bovine muscle, kidney and milk. The analytes were extracted with acetonitrile/water and cleaned-up by a single reversed-phase solid-phase extraction step. Highest sensitivity for the analytes was obtained when amoxicillin, ampicillin, cephalexin, cephapirin, desacetylcephapirin, cephalonium, cefquinome and cefazolin were measured in the positive electrospray ionisation mode (ESI (+)) and cefoperazone, benzylpenicillin, phenoxymethylpenicillin, oxacillin, cloxacillin, dicloxacillin and nafcillin in the negative electrospray ionisation mode (ESI (−)). Chromatography was performed with a formic acid/methanol gradient. Collision-induced dissociation (CID) with argon was used for fragmentation of the pseudomolecular ions to achieve the required specificity. Possible adverse matrix effects on the electrospray ionisation process caused by co-eluting matrix components were investigated. The method was validated closely to the new EU guidelines and applied to positively screened samples from official food control allowing the identification and quantification of the residual β-lactams.  相似文献   

20.
Non-steroidal anti-inflammatory drugs (NSAIDs) are known for inhibition of cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). Diclofenac and its analogs, having phenylacetic acid moiety, are important NSAIDs. In this review article, various methodologies developed after 90?s for the synthesis of various analogs/derivatives of diclofenac sodium have been discussed and summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号