首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
3.
An ordered dye cluster of Methyl Reds was formed in double-stranded DNA by hybridizing two complementary DNA-dye conjugates, each involving a Methyl Red moiety on a threoninol linker and a 1,3-propanediol spacer arranged alternately in the middle of the DNA sequence. In the duplex, Methyl Reds from each strand were axially stacked antiparallel to each other, as determined from NMR analysis. This clustering of Methyl Reds induced distinct changes in both UV/Vis and CD spectra. Single-stranded DNA-Methyl Red conjugates on D-threoninol linkers and (1,3-propanediol) spacers exhibited broad absorption spectra with lambda(max) at around 480 nm, and almost no CD was observed at around the absorption maximum of Methyl Red. However, as Methyl Reds were clustered by hybridization, lambda(max) shifted towards shorter wavelengths with respect to its monomeric transition. This hypsochromic shift increased as the number of Methyl Red molecules increased. Furthermore, a positive couplet was also strongly induced here. These dye clusters are H-aggregates, in which molecular excitons are coupled. The positive couplet demonstrates that the clusters on D-threoninol form a right-handed helix. In contrast, the induced CD became much weaker with Methyl Red on L-threoninol, which intrinsically prefers counterclockwise winding. Thus, mutual orientation of the stacked dye molecules was controlled by the chirality of the linker.  相似文献   

4.
Framework titanium atoms in titanium-substituted silicalite (TS-1) can be identified by UV resonance Raman spectroscopy since the associated Raman bands at 1125, 530, and 490 cm−1 (see figure) are observed only when the charge transfer transition associated with the framework Ti atoms is excited by a UV laser. Thus, framework Ti atoms can be distinguished from nonframework Ti atoms and other defect sites. This method can be applicable to identifying transition metal atoms in the frameworks of other molecular sieves.  相似文献   

5.
6.
A joint computational–experimental study has been carried out to analyze the homoconjugative interactions in 7,7‐diarylnorbornane (DPN) derivatives. The experimentally observed new bands in their UV/Vis have been accurately assigned by means of TD‐DFT calculations. Both experimental data and computations show that aromatic homoconjugation in acyclic systems is an effective mechanism for electron delocalization that resembles the situation described for polyphenylenes and polyenes. The effective homoconjugation length in homoconjugated oligomers is in the range of 6–7 aryl rings. The effect of substituents directly attached to the para carbon atom of the DPN moiety have been also studied. We found that the HOMO→LUMO vertical transitions can indeed be modified by the nature of the aromatic substituents in order to provoke dramatic changes in the electronic properties (i.e., in the absorption spectra) of the studied species.  相似文献   

7.
In N-(2,5-di-tert-butylphenyl)-9-pyrrolidinoperylene-3,4-dicarboximide (5PI) the absorption and emission spectra display large solvatochromic shifts, but, remarkably, the Stokes shift is practically independent of solvent polarity. This unique behavior is caused by the extraordinarily large ground-state dipole moment of 5PI, which further increases upon increasing the solvent polarity, whereas the excited-state dipole moment is less solvent dependent. In the corresponding piperidine compound, 6PI, this effect is much less important owing to the weaker coupling between the amino group and the aromatic imide moiety, and in the corresponding naphthalimide, 5NI, it is absent. The latter shows the conventional solvatochromic behavior of a push-pull substituted conjugated system, that is, minor shifts in absorption and a larger change in the emission energy with solvent polarity.  相似文献   

8.
Syntheses of a unique set of energy transfer dye labeled nucleoside triphosphates, compounds 1-3, are described. Attempts to prepare these compounds were only successful if the triphosphorylation reaction was performed before coupling the dye to the nucleobase, and not the other way around. Compounds were prepared as both the 2'-deoxy (a) and 2',3'-dideoxy- (b) forms. They feature progressively longer rigid conjugated linkers connecting the nucleobase and the hydroxyxanthone moiety. UV spectra of the parent nucleosides 12-14 show that as the length of the linker increases so does the absorption of the donor in the 320-330 nm region, but with relatively little red-shift of the maxima. Fluorescence spectra of the same compounds show that radiation in the 320-330 nm region results in predominant emission from the fluorescein. When the linker is irradiated at 320 nm, the only significant emission observed corresponds to the hydroxyxanthone part of the molecules at 520 nm; this corresponds to an effective Stokes' shift of 200 nm. As the absorption at 320-330 nm by the linker increases with length, so does the intensity of the fluorescein emission. A gel assay was used to gauge relative incorporation efficiencies of compounds 1-3, dTTP, ddTTP, and 6-TAMRA-ddTTP. Throughout, the thermostable polymerase TaqFS was used, as it is the one most widely applied in high throughput DNA sequencing. This assay showed that only compounds 3 were incorporated efficiently; these have the longest linkers. Of these, the 2'-deoxy nucleoside 3 a was incorporated and did not prevent the polymerase from extending the chain further. The 2',3'-dideoxy nucleoside 3 b was incorporated only about 430 times less efficiently than ddTTP under the same conditions, and caused chain termination. The implications of these studies on modified sequencing protocols are discussed.  相似文献   

9.
10.
We present an integrated computational tool, rooted in density functional theory, the polarizable continuum model, and classical molecular dynamics employing spherical boundary conditions, to study the spectroscopic observables of molecules in solution. As a test case, a modified OPLS-AA force field has been developed and used to compute the UV and NMR spectra of acetone in aqueous solution. The results show that provided the classical force fields are carefully reparameterized and validated, the proposed approach is robust and effective, and can also be used by nonspecialists to provide a general and powerful complement to experimental techniques.  相似文献   

11.
12.
The psoralens 8-methoxypsoralen (8-MOP), 4,5′,8-trimethylpsoralen (TMP) and 5-methoxypsoralen (5-MOP) find clinical application in PUVA (psoralen + UVA) therapy. PUVA treats skin diseases like psoriasis and atopic eczema. Psoralens target the DNA of cells. Upon photo-excitation psoralens bind to the DNA base thymine. This photo-binding was studied using steady-state UV/Vis and IR spectroscopy as well as nanosecond transient UV/Vis absorption. The experiments show that the photo-addition of 8-MOP and TMP involve the psoralen triplet state and a biradical intermediate. 5-MOP forms a structurally different photo-product. Its formation could not be traced by the present spectroscopic technique.  相似文献   

13.
The electron absorption spectra of alkylvinyl chalcogenides (CH2=CHEAlk, E = S, Se, Te) were analyzed with consideration of the photoelectron spectroscopic data. The following sequence of electronic transitions was found in their UV spectra:
  相似文献   

14.
15.
The decay channels of singlet excited adenine uracil monophosphate (ApU) in water are studied with CASPT2//CASSCF:MM potential energy calculations and simulation of the 2D‐UV spectroscopic fingerprints with the aim of elucidating the role of the different electronic states of the stacked conformer in the excited state dynamics. The adenine 1La state can decay without a barrier to a conical intersection with the ground state. In contrast, the adenine 1Lb and uracil S(U) states have minima that are separated from the intersections by sizeable barriers. Depending on the backbone conformation, the CT state can undergo inter‐base hydrogen transfer and decay to the ground state through a conical intersection, or it can yield a long‐lived minimum stabilized by a hydrogen bond between the two ribose rings. This suggests that the 1Lb, S(U) and CT states of the stacked conformer may all contribute to the experimental lifetimes of 18 and 240 ps. We have also simulated the time evolution of the 2D‐UV spectra and provide the specific fingerprint of each species in a recommended probe window between 25 000 and 38 000 cm?1 in which decongested, clearly distinguishable spectra can be obtained. This is expected to allow the mechanistic scenarios to be discerned in the near future with the help of the corresponding experiments. Our results reveal the complexity of the photophysics of the relatively small ApU system, and the potential of 2D‐UV spectroscopy to disentangle the photophysics of multichromophoric systems.  相似文献   

16.
17.
The optical absorption properties of (poly)aromatic hydrocarbons occluded in a nanoporous environment were investigated by theoretical and experimental methods. The carbonaceous species are an essential part of a working catalyst for the methanol‐to‐olefins (MTO) process. In situ UV/Vis microscopy measurements on methanol conversion over the acidic solid catalysts H‐SAPO‐34 and H‐SSZ‐13 revealed the growth of various broad absorption bands around 400, 480, and 580 nm. The cationic nature of the involved species was determined by interaction of ammonia with the methanol‐treated samples. To determine which organic species contribute to the various bands, a systematic series of aromatics was analyzed by means of time‐dependent density functional theory (TDDFT) calculations. Static gas‐phase simulations revealed the influence of structurally different hydrocarbons on the absorption spectra, whereas the influence of the zeolitic framework was examined by using supramolecular models within a quantum mechanics/molecular mechanics framework. To fully understand the origin of the main absorption peaks, a molecular dynamics (MD) study on the organic species trapped in the inorganic host was essential. During such simulation the flexibility is fully taken into account and the effect on the UV/Vis spectra is determined by performing TDDFT calculations on various snapshots of the MD run. This procedure allows an energy absorption scale to be provided and the various absorption bands determined from in situ UV/Vis spectra to be assigned to structurally different species.  相似文献   

18.
A novel perylene bisimide (PBI) dye bearing one solubilizing dialkoxybenzyl and one bulky 2,5‐di‐tert‐butylphenyl substituent was synthesized and its aggregation behavior was analyzed by NMR and UV/Vis spectroscopy in various chloroform/methylcyclohexane (MCH) solvent mixtures. In the presence of no less than 10 vol % chloroform, exclusive self‐assembly of this PBI dye into π‐stacked dimers was unambiguously confirmed by means of both concentration‐dependent 1H NMR and UV/Vis spectroscopic experiments. Based on ROESY NMR, a well‐defined π‐stacked dimer structure was determined and further corroborated by molecular modeling studies. By varying the solvent composition of chloroform and MCH, the solvent effects on the Gibbs free energy of PBI dimerization were elucidated and showed a pronounced nonlinearity between lower and higher MCH contents. This observation could be related to a further growth process of dimers into larger aggregates that occurs in the absence of chloroform, which is required to solvate the aromatic π surfaces. With the help of a single‐crystal structure analysis for a related PBI dye, a structural model could be derived for the extended aggregates that are still composed of defined π–π‐stacked PBI dimer entities.  相似文献   

19.
The rotationally resolved S1<--S0 electronic origins of several deuterated resorcinol rotamers cooled in a molecular beam have been recorded. An automated assignment of the observed spectra has been performed using a genetic algorithm approach with an asymmetric rotor Hamiltonian. The structures of resorcinol A and resorcinol B were derived from the rotational constants of twenty deuterated species for both electronic states. The lifetimes of different resorcinol isotopomers in the S1 state are also reported. As is the case for phenol, these lifetimes mainly depend on the position of deuteration. A nearly perfect additivity of the zero-point energies after successive deuterations in resorcinol rotamers has been discovered and subsequently used in the full assignment of the previously reported low-resolution spectra of deuterated resorcinol A. An analogous spectrum is also predicted for the resorcinol B rotamer.  相似文献   

20.
DNA and RNA hairpins, which represent well-folded oligonucleotide structures, were irradiated and the amount of damaged hairpins was directly quantified by using ion-exchange HPLC. The types of photoproducts formed in the hairpins were determined by ESI-HPLC-MS/MS experiments. Irradiation of hairpins with systematically varied sequences and conformations (A versus B) revealed remarkable differences regarding the amount of photolesions formed. UV-damage formation is, therefore, a strongly sequence and conformation dependent process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号