首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
具有脉冲效应和综合害虫控制的捕食系统   总被引:8,自引:1,他引:7  
本文通过生物控制和化学控制提出了具有周期脉冲效应与害虫控制的捕食系统. 系统保护天敌避免灭绝,在一些条件下可以使害虫灭绝.就是说当脉冲周期小于某一临界值时,存在全局稳定害虫灭绝周期解.脉冲周期增大大于临界值时,平凡害虫灭绝周期解失去稳定性并产生正周期解,利用分支理论来研究正周期解的存在性.进而,利用李雅普诺夫函数和比较定理确定了持续生存的条件.  相似文献   

2.
讨论了与害虫管理相关的一类捕食者具脉冲扰动与相互干扰的阶段结构时滞捕食-食饵模型,得到了害虫灭绝周期解的全局吸引和系统持久的充分条件,也证明了系统的所有解的一致完全有界.我们的结论为现实的害虫管理提供了一定的理论依据.  相似文献   

3.
讨论了具有非线性传染率与脉冲控制的害虫管理S-I传染病模型,此模型考虑的是脉冲投放病虫和喷洒农药.不但得到了系统的所有解的一致完全有界,而且得到了害虫灭绝的边界周期解的全局渐进稳定和系统的一致持久的条件.为实际的害虫管理提供了可靠的理论依据.  相似文献   

4.
研究一类状态依赖脉冲控制的害虫管理数学模型,当害虫的数量达到一定的临界值时,通过释放天敌和喷洒农药使得害虫的数量不超过经济危害水平.首先利用几何分析和后继函数方法得到了系统阶1周期解的存在性,进而运用类Poincare准则证明系统阶1周期解是轨道渐近稳定的.结论表明在一定的条件下,总能将害虫控制在经济危害水平以内,从而人们在农业生产过程中能够获得最大收益.证明系统存在阶1周期解的方法可推广到其它状态依赖脉冲反馈模型中.  相似文献   

5.
研究一类具有脉冲控制的害虫管理SI数学模型,运用Floquet理论证明了系统害虫灭绝周期解的全局渐近稳定性,并对所得结论进行了数值模拟.  相似文献   

6.
基于综合害虫防治,对具脉冲效应的Monod—Haldane功能反应的捕食系统进行了分析,根据Floquet乘子理论,获得了害虫灭绝周期解全局渐近稳定与系统持续生存的条件.并讨论了害虫灭绝周期解附近分支出非平凡周期解的问题,且文章利用Matlab软件对害虫灭绝周期解害虫周期爆发现象进行了数值模拟.  相似文献   

7.
基于害虫的生物控制和化学控制策略,考虑到化学杀虫剂对天敌的影响,利用脉冲微分方程建立了在不同的固定时刻分别喷洒杀虫剂和释放天敌的具有时滞的第III功能反应的捕食者-食饵脉冲动力系统.证明了当脉冲周期小于某个临界值时,系统存在一个渐进稳定的害虫灭绝周期解,否则系统持续生存.并用Matlab软件对害虫灭绝周期解及害虫周期爆发现象进行了数值模拟.  相似文献   

8.
研究一类具有脉冲效应和非单调功能反应的两个捕食者一个食饵害虫控制系统.通过脉冲微分方程的Floquet理论和小幅扰动方法,证明了当脉冲周期小于某个临界值时,系统存在一个渐近稳定的害虫根除周期解,否则系统是持续生存的.最后,通过数值实例,给出了一简单讨论.  相似文献   

9.
研究一类食饵(害虫)具有阶段结构并带有流行病、捕食者(天敌)具脉冲放养和时滞的捕食-食饵模型,得到了害虫灭绝周期解全局吸引的充分条件,以及当脉冲周期在一定范围内,易感害虫种群的密度可以控制在经济危害水平E(EIL)之下.所得结论将为现实的害虫管理提供一定的理论依据,数值分析也进一步说明系统的动力学性质.  相似文献   

10.
本文研究一类捕食者具有阶段结构和食饵具有群体防卫作用的脉冲控制系统,应用Floquet乘子理论和脉冲比较定理,获得食饵(害虫)灭绝周期解局部稳定和系统持续生存的充分条件,并通过数值例子揭示了系统诸如高倍周期振荡,混沌,吸引子突变,倍周期与半周期分支等复杂的动力学现象.讨论脉冲周期,成年食饵的投放量和群体防卫效应系数对系统的重要作用,得出的结论为实际的害虫管理提供了可靠的策略依据.  相似文献   

11.
魏春金  陈兰荪 《数学研究》2008,41(4):393-400
本文考虑了一类食饵具有流行病和阶段结构的脉冲时滞捕食模型.利用脉冲时滞微分方程的相关理论和方法,获得易感害虫根除周期解全局吸引的充分条件以及当脉冲周期在一定范围内时,天敌与易感害虫可以共存且易感害虫的密度可以控制在经济危害水平E(EIL)之下.我们的结论为现实的害虫管理提供了可靠的策略依据.  相似文献   

12.
考虑了一个害虫和天敌都有阶段结构及具有饱和反应率的阶段时滞脉冲捕食者-食饵模型,利用人工周期定量地投放有病的害虫和天敌去治理害虫.借助脉冲时滞微分方程的相关理论和方法获得易感害虫根除周期解全局吸引的充分条件以及天敌与易感害虫可以共存且易感害虫的密度可以控制在经济危害水平之下的充分条件.我们的结论为现实的害虫管理提供了可靠的策略依据.  相似文献   

13.
In this paper, we consider an integrated pest management model with disease in the pest and a stage structure for its natural predator, which is subject to impulsive and periodic controls. A nonlinear incidence rate expressed in an abstract form, is used to describe the propagation of the disease, which is spread through the periodic release of infective pests, the functional response of the mature predator also being given in an abstract, unspecified form. Sufficient conditions for the local and global stability of the susceptible pest-eradication periodic solution are found by means of Floquet theory and comparison methods, the permanence of the system also being discussed. These stability conditions are shown to be biologically significant, being reformulated as balance conditions for the susceptible pest class.  相似文献   

14.
In pest control, there are only a few papers on mathematical models of the dynamics of microbial diseases. In this paper a model concerning biologically-based impulsive control strategy for pest control is formulated and analyzed. The paper shows that there exists a globally stable susceptible pest eradication periodic solution when the impulsive period is less than some critical value. Further, the conditions for the permanence of the system are given. In addition, there exists a unique positive periodic solution via bifurcation theory, which implies both the susceptible pest and the infective pest populations oscillate with a positive amplitude. In this case, the susceptible pest population is infected to the maximum extent while the infective pest population has little effect on the crops. When the unique positive periodic solution loses its stability, numerical simulation shows there is a characteristic sequence of bifurcations, leading to a chaotic dynamic, which implies that this model has more complex dynamics, including period-doubling bifurcation, chaos and strange attractors.  相似文献   

15.
In this paper, we propose a model with impulsive control of epidemics for pest management. By using Floquet's theorem, small‐amplitude perturbation skills and comparison theorem, we show that there exists a globally asymptotically stable susceptible pest‐eradication periodic solution when the release amount of infective pests is larger than some critical value. However, when the amount of infective pests released is less than this critical value, the system is shown to be permanent, which implies that the trivial periodic susceptible pest‐eradication solution loses its stability. Further, the existence of a positive periodic endemic solution and other rich dynamics are also studied by numerical simulation. Therefore, we can use the amount of release of infective pests to control susceptible pests at desirable low levels. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
A predator–prey system with two impulses on the diseased prey is formulated and analyzed for the purpose of integrated pest management. The local and global stability of the susceptible pest‐eradication periodic solution, as well as the permanence of the system, are obtained under the sufficient conditions by means of Floquet's theory for impulsive differential equations. Finally, we interpret our mathematical results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
From a biological pest management standpoint, epidemic diseases models have become important tools in control of pest populations. This paper deals with an impulsive delay epidemic disease model with stage-structure and a general form of the incidence rate concerning pest control strategy, in which the pest population is subdivided into three subgroups: pest eggs, susceptible pests, infectious pests that do not attack crops. Using the discrete dynamical system determined by the stroboscopic map, we obtain the exact periodic susceptible pest-eradication solution of the system and observe that the susceptible pest-eradication periodic solution is globally attractive, provided that the amount of infective pests released periodically is larger than some critical value. When the amount of infective pests released is less than another critical value, the system is shown to be permanent, which implies that the trivial susceptible pest-eradication solution loses its attractivity. Our results indicate that besides the release amount of infective pests, the incidence rate, time delay and impulsive period can have great effects on the dynamics of our system.  相似文献   

18.
In this paper, a predator–prey model with disease in the prey is constructed and investigated for the purpose of integrated pest management. In the first part of the main results, the sufficient condition for the global stability of the susceptible pest-eradication periodic solution is obtained, which means if the release amount of infective prey and predator satisfy the condition, then the pest will be controlled. The sufficient condition for the permanence of the system is also obtained subsequently, which means if the release amount of infective prey and predator satisfy the condition, then the prey and the predator will coexist. At last, we interpret our mathematical results.  相似文献   

19.
A mathematical model for the dynamics of a prey-dependent consumption model concerning integrated pest management is proposed and analyzed. We show that there exists a globally stable pesteradication periodic solution when the impulsive period is less than some critical values. Furthermore, the conditions for the permanence of the system are given. By using bifurcation theory, we show the existence of a nontrival periodic solution if the pest-eradication periodic solution loses its stability. When the unique positive periodic solution loses its stability, numerical simulation shows there is a characteristic sequence of bifurcations, leading to a chaotic dynamics, which implies that dynamical behaviors of prey-dependent consumption concerning integrated pest management are very complex, including period-doubling cascades, chaotic bands with periodic windows, crises, symmetry-breaking bifurcations and supertransients.  相似文献   

20.
In this paper, the bifurcation of nontrivial periodic solutions for an impulsively perturbed system of ordinary differential equations which models an integrated pest management strategy is studied by means of a fixed point approach. A biological control, consisting in the periodic release of infective pests, and a chemical control, consisting in pesticide spraying, are employed to maintain susceptible pests below an acceptable level. It is assumed that the biological and chemical control act with the same periodicity, but not in the same time. It is then shown that if the constant amount of infective pests released each time reaches a certain threshold value, then the trivial susceptible pest-eradication periodic solution loses its stability, which is transferred to a newly emerging nontrivial periodic solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号