首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanical properties and morphology of multiwall carbon nanotube (MWNT)/polypropylene (PP) nanocomposites were studied as a function of nanotube orientation and concentration. Through melt mixing followed by melt drawing, using a twin screw mini‐extruder with a specially designed winding apparatus, the dispersion and orientation of MWNTs was optimized in PP. Tensile tests showed a 32% increase in toughness for a 0.25 wt % MWNT in PP (over pure PP). Moreover, modulus increased by 138% with 0.25 wt % MWNTs. Transmission electron microscopy and scanning electron microscopy demonstrated qualitative nanotube dispersion and orientation. Wide angle X‐ray diffraction was used to study crystal morphology and orientation by calculating the Herman's orientation factor for the composites as function of nanotube loading and orientation. The addition of nanotubes to oriented samples causes the crystalline morphology to shift from α and mesophase to only α phase. Furthermore, the addition of nanotubes (without orientation) was found to cause isotropization of the PP crystal, and drawing was shown to improve crystal orientation through the orientation factor. In addition, differential scanning caloriometry qualitatively revealed little change in overall crystallinity. In conclusion, this work has shown that melt mixing coupled with melt drawing has yielded MWNT/PP composites with a unique combination of strength and toughness suitable for advanced fiber applications, such as smart fibers and high‐performance fabrics. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 864–878, 2006  相似文献   

2.
Summary: We report on a new route to synthesize polymeric carbon nanotube‐polyurethane (PU) nanocomposites. Multi‐walled carbon nanotubes (MWNTs) functionalized by chemical modification were incorporated as a crosslinker in prepolymer, which was prepared from a reaction of 4,4′‐methylene bis(phenylisocyanate) and poly(ε‐caprolactone)diol. The reinforcing effect of carbon nanotubes in crosslinked MWNT‐PU nanocomposites was more pronounced as compared to that in conventional MWNT‐PU nanocomposites. The optimum content of chemically modified MWNTs for crosslinking with polyurethane was determined to be approximately 4 wt.‐% in our samples, based on observation of a NCO peak in FT‐IR spectroscopy. MWNT‐crosslinked polyurethane containing 4 wt.‐% modified MWNTs showed the highest modulus and tensile strength among the composites and pure PU. The presence of functionalized MWNTs in the polymeric nanocomposite yielded enhancement in the thermal stability due to crosslinking of the MWNTs with PU.

Possible configuration for MWNT‐PU nanocomposite molecules and FT‐IR spectra of samples obtained during reaction of prepolymer with functionalized MWNTs (second step).  相似文献   


3.
Well-dispersed multiwalled carbon nanotube (MWNT)/polystyrene composites have been prepared. Transmission and scanning electron microscopy were employed to observe the distribution of the MWNTs in the composites in a microscopic scale, indicating a nanotube network formed in the matrix. The dispersion of the nanotubes in the polymer was monitored by oscillatory rheology. It was found that the addition of MWNTs in the polymer had a drastic influence on the rheological behavior of the composites. As the MWNT loading increased, Newtonian behavior disappeared at low frequency, suggesting a transition from liquid-like to solid-like viscoelastic behavior. A more homogeneous dispersion or a greater loading of the nanotubes in the matrix produced stronger solid-like and nonterminal behavior, and the composites exhibited less temperature dependence at elevated temperature, compared to the matrix melt.  相似文献   

4.
Differential scanning calorimetry (DSC), polarized optical microscopy, and X‐ray diffraction methods were used to investigate the isothermal crystallization behavior and crystalline structure of poly(?‐caprolactone) (PCL)/multiwalled carbon nanotube (MWNT) composites. PCL/MWNT composites were prepared via the mixing of a PCL polymer solution with carboxylic groups containing multiwalled carbon nanotubes (c‐MWNTs). Both Raman and Fourier transform infrared spectra indicated that carboxylic acid groups formed at both ends and on the sidewalls of the MWNTs. A transmission electron microscopy micrograph showed that c‐MWNTs were well separated and uniformly distributed in the PCL matrix. DSC isothermal results revealed that introducing c‐MWNTs into the PCL structure caused strongly heterogeneous nucleation induced by a change in the crystal growth process. The activation energy of PCL drastically decreased with the presence of 0.25 wt % c‐MWNT in PCL/c‐MWNT composites and then increased with increasing MWNT content. The result indicated that the addition of c‐MWNT to PCL induced heterogeneous nucleation (lower total activation energy) at a lower c‐MWNT content and then reduced the transportation ability of polymer chains during crystallization processes at a higher MWNT content (higher total activation energy). A correlation between the crystallization kinetics, melting behavior, and crystalline structure of PCL/c‐MWNT composites was also discussed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 598–606, 2006  相似文献   

5.
This article reports on the fabrication of oriented composite fibers between polylactide (PLA) and multiwall carbon nanotube (MWNT). The fibers were fabricated using a custom‐built melt fiber‐drawing setup. The influence of processing parameters on the final fiber diameter and on the orientation were characterized and optimized. Composite fibers were fabricated at various MWNT contents. Addition of low amounts of MWNT (0.25–1 wt %) to PLA did not have a significant effect on the diameters of the fibers. Observations of the composite morphology under STEM indicated preferential orientation of the MWNTs along the draw direction of the fibers. Increasing amounts of MWNTs was found to increase crystallization kinetics and content. The crystalline content had a direct and profound implication on the mechanical properties with 0.5‐wt % MWNT fibers having the highest crystalline content and also the highest Young's modulus. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 477–484  相似文献   

6.
Poly(L ‐lactide) (PLLA)/multiwall carbon nanotube (MWNT) composites were prepared by the solvent‐ultrasonic‐casting method. Only very low concentrations of MWNTs (<0.08 wt %) were added in the composites. Isothermal and nonisothermal crystalline measurements were carried out on PLLA/MWNT composites to investigate the effect of MWNTs on PLLA crystalline behavior. DSC results showed that the incorporation of MWNTs significantly shortened the crystalline induction time and increased the final crystallinity of the composite, which indicated MWNTs have a strong nucleation effect on PLLA even at very low concentrations. The nonisothermal crystallization measurements showed that the MWNTs greatly speed up crystallization during cooling. From isothermal crystallization results, both PLLA and PLLA/MWNT composites samples closely followed a relationship based on Lauritzen‐Hoffman theory, with the regime II to III transition shifting to lower temperature with increasing MWNT concentration. A double melting peak appeared in both nonisothermal and isothermal measurements. The conditions under which it appeared were found to closely depend on the regime II‐III transition temperature obtained from Lauritzen‐Hoffman theory. From the magnitude and position of melting peaks, it is proposed that the double melting peak is caused by a disorder‐order crystal phase transition. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2341–2352, 2009  相似文献   

7.
Polyoxymethylene (POM)/multiwalled carbon nanotubes (MWNTs) nanocomposites were prepared through a simple solution‐evaporation method assisted by ultrasonic irradiation. To enhance the dispersion of MWNTs in POM, MWNTs were chemically functionalized with PEG‐substituted amine (MWNT‐g‐PEG), which exhibited strong affinity with POM due to their similar molecular structure. The thermal conductivity and the mechanical properties of the composites were investigated, which showed that the thermal conductive properties of POM were improved remarkably in the presence of MWNTs, whereas reduced by using MWNT‐g‐PEG due to the heat transport barrier of the grafted‐PEG‐substituted amine chain. A nonlinear increase of the thermal conductivity was observed with increasing MWNTs content, and the Maxwell‐Eucken model and the Agari model were used for theoretical evaluation. The relatively high effective length factor of the composite predicted with mixture equation indicated that there were few entangles of MWNTs for the samples of MWNT‐g‐PEG in the composites. The mechanical strength of the composites can be improved remarkably by using suitable content of such functionalized MWNTs, and with the increase of the aliphatic chain length of PEG‐substituted amine, the toughness of the composites can be enhanced. Transmission electron microscope result indicated that MWNT‐g‐PEG exhibited strong affinity with POM and a good dispersion of MWNTs was achieved in POM matrix. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 905–912, 2010  相似文献   

8.
Processing, electrical, and electromagnetic interference (EMI) shielding behaviors of carbon nanotube (CNT)/acrylonitrile–butadiene–styrene (ABS) nanocomposites were studied as function of CNT concentration. The nanocomposites were prepared by melt mixing followed by compression molding. The selective and good level of dispersion of CNT in the styrene–acrylonitrile section of the ABS polymer was found to create conductive networks in the ABS matrix at a nanofiller loading of 0.75 wt %. At this nanofiller loading, the nanocomposite electrical conductivity was 10?5 S/m. This conductivity makes the nanocomposite suitable for electrostatic discharge protection applications. The EMI shielding effectiveness of the nanocomposites increased with the increase in nanofiller concentration. In the 100–1500 MHz frequency range, 1.1 mm thick plates made of ABS nanocomposite filled with 5 wt % CNT exhibit an EMI shielding effectiveness of 24 dB. At this shielding level, the nanocomposite is suitable for a broad range of applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

9.
We demonstrate here a feasible approach to the preparation of multiwalled carbon nanotube (MWNT)/polypyrrole (PPy) core–shell nanowires by in situ inverse microemulsion. Transmission electron microscopy and scanning electron microscopy showed that the carbon nanotubes were uniformly coated with a PPy layer with a thickness of several to several tens of nanometers, depending on the MWNT content. Fourier transform infrared spectra suggested that there was strong interaction between the π‐bonded surface of the carbon nanotubes and the conjugated structure of the PPy shell layer. The thermal stability and electrical conductivity of the MWNT/PPy composites were examined with thermogravimetric analysis and a conventional four‐probe method. In comparison with pure PPy, the decomposition temperature of the MWNT/PPy (1 wt % MWNT) composites increased from 305 to 335 °C, and the electrical conductivity of the MWNT/PPy (1 wt % MWNT) composites increased by 1 order of magnitude. The current–voltage curves of the MWNT/PPy nanocomposites followed Ohm's law, reflecting the metallic character of the MWNT/PPy nanocomposites. The cyclic voltammetry measurements revealed that PPy/MWNT composites showed an enhancement in the specific charge capacity with respect to that of pure PPy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6105–6115, 2005  相似文献   

10.
Poly(ethylene terephthalate) (PET) nanocomposites were prepared by melt‐extruding mixtures of PET and functionalized multiwalled carbon nanotubes (MWNTs) with some interaction with PET molecules. For the functionalization of MWNTs, benzyl isocyanate and phenyl isocyanate with different molecular flexibility were employed on the surface of the MWNTs via chemical modification, respectively. The reaction for functionalization of MWNTs was confirmed by FTIR and transmission electron microscopy (TEM) measurements. TEM observations indicated that both benzyl and phenyl isocyanate groups covered the surface of the MWNTs after functionalization. The PET nanocomposites containing isocyanate groups showed improved mechanical properties, including the tensile strength and tensile modulus, compared with those with pristine and acid‐treated nanotubes. These improvements were ascribed to π–π interactions between the aromatic rings of PET molecules and the isocyanate group in MWNTs. The functionalized MWNTs showed a better dispersion of carbon nanotubes in the matrix polymer and a different fractured cross‐section morphology in scanning electron microscope measurements relative to the pristine MWNTs. The crystallinity of the functionalized MWNT‐PET nanocomposites was significantly higher than that of the pristine and acid‐treated MWNTs. FTIR results indicated that the presence of carbon nanotubes induced trans‐conformation of PET chains, and trans conformation was particularly dominant in PET composites incorporating MWNT‐phenyl. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 900–910, 2008  相似文献   

11.
Herein, the effect of the dispersion uniformity of multi-wall carbon nanotubes (MWNTs) on the thermal conductivity of nylon 610/MWNTs nanocomposite was investigated. Compared to raw MWNTs, the carboxylated MWNTs (MWNT-COOH) were well dispersed in aqueous hexamethylenediamine solution and the dispersion stability was further improved by the presence of poly(vinyl alcohol). By means of interfacial polymerization between the aqueous hexamethylenediamine solution containing the MWNTs and a sebacoyl chloride phase, nylon 610/MWNT composites were prepared. It was found that the stable dispersion state of MWNTs in aqueous solutions greatly improved the thermal conductivity of the ultimate nanocomposites. It is noted that the thermal conductivity of nylon 610/MWNT-COOH/PVA nanocomposite was 135% higher than that of nylon 610/raw MWNTs for the same 0.1 wt% content of MWNTs.  相似文献   

12.
This study describes the preparation of polypyrrole (PPy)/multiwalled carbon nanotube (MWNT) composites by in situ chemical oxidative polymerization. Various ratios of MWNTs, which served as hard templates, were first dispersed in aqueous solutions with the surfactant cetyltrimethylammonium bromide to form micelle/MWNT templates and overcome the difficulty of MWNTs dispersing into insoluble solutions of pyrrole monomer, and PPy was then synthesized via in situ chemical oxidative polymerization on the surface of the templates. Raman spectroscopy, Fourier transform infrared (FTIR), field‐emission scanning electron microscopy (FESEM), and high‐resolution transmission electron microscopy (HRTEM) were used to characterize the structure and morphology of the fabricated composites. Structural analysis using FESEM and HRTEM showed that the PPy/MWNT composites were core (MWNT)–shell (PPy) tubular structures. Raman and FTIR spectra of the composites were almost identical to those of PPy, supporting the idea that MWNTs served as the core in the formation of a coaxial nanostructure for the composites. The conductivities of these PPy/MWNT composites were about 150% higher than those of PPy without MWNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1413–1418, 2006  相似文献   

13.
Polypropylene (PP) nanocomposites with three different functionalized‐multiwalled nanotubes (F‐MWNTs) are compared in terms of their thermomechanical properties, morphology, oxygen permeability, and optical transparency. The F‐MWNTs dodecanol‐MWNT, dodecylamine‐MWNT, and 1,1,1,3,3,3‐hexafluoro‐2‐phenyl‐2‐propanol‐MWNT were combined with PP to produce hybrid films. The variations of their properties with the matrix polymer F‐MWNT content are discussed. Transmission electron microscopy photographs show that most of the F‐MWNTs are dispersed homogeneously in the matrix polymer on the nanoscale, although some agglomerated F‐MWNT particles are formed. Even composites with low F‐MWNT contents (≤3 wt %) exhibit much better thermomechanical values than pure PP. The gas permeability of the hybrids was found to decrease linearly with increases in the F‐MWNT content of the PP matrix. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

14.
The focus of the paper is to investigate several issues related to the state of dispersion of multiwalled carbon nanotubes (MWNTs) in a polycarbonate (PC) matrix. A masterbatch of PC-MWNT (15 wt.%) was diluted with different amounts of PC in a small scale conical twin screw extruder (DACA Micro Compounder) to obtain different compositions of MWNT. In this system, electrical measurements indicated percolation of MWNT between 1.0 and 1.5 wt.%. We report TEM and AFM investigations of the state of dispersion of MWNT, in the entire volume of the matrix, in selected composites with compositions below (1 wt.% MWNT) and above the percolation threshold (2 and 5 wt.% MWNT). In addition, it was investigated if surface segregation of MWNT and flow induced orientation of nanotubes within the extruded strands had been occurred. It is found that the nanotubes dispersed uniformly through the matrix showing no significant agglomeration in the compositions studied. TEM micrographs seem to be able to detect the percolated structure of the carbon nanotubes. Furthermore, by comparing AFM micrographs from the core region and near to surface region no evidence of segregation or depletion of MWNT at the surface of the extruded strand was found. Comparison of TEM and AFM micrographs on surfaces cut along and perpendicular to the strand direction led to the conclusion that no preferred alignment had occurred as a result of extrusion. Aside from TEM technique, AFM is shown to be suitable to characterize the state of nanotube dispersion along with the issue of surface segregation and orientation of the nanotubes.  相似文献   

15.
Agglomeration is an issue of major concern for unmodified multi‐walled carbon nanotubes (MWNTs)‐aided polymeric composites. To overcome the above‐mentioned problem, multi‐walled carbon nanotubes (MWNTs) are modified by polycarbosilane (PCS)‐derived Silicone carbide (SiC). Acrylonitrile Butadiene Styrene (ABS)/Liquid Crystalline polymer (LCP)/MWCNT nanocomposites are prepared through melt blending in a twin screw extruder. X‐Ray Diffraction (XRD) studies authenticate the creation of ß‐SiC particles. Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM) studies reveal the formation of core–shell morphology involving MWNT as the core and SiC‐coated MWNT as the shell. The degree of dispersion of MWNT is far better when it has been coated with SiC. As viewed from Thermo‐gravimetric analysis (TGA), the thermal stability is substantially increased in SiC‐aided nanocomposite in comparison to ABS/LCP/unmodified CNT blend. Glass transition temperature as well as mechanical properties are improved significantly (in the presence of SiC‐coated MWNT) as a result of homogeneous dispersion exhibited by MWNT. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The aim of this study was to investigate physical and mechanical properties of graphene oxide (GO)/polyethersulfone (PES) nanocomposite films. The films were produced by solution casting method. The mechanical properties of composite films were evaluated by tensile test. A significant enhancement in the mechanical properties of neat PES films was obtained incorporating a small amount of GO loading (0.05–1 wt.%). The highest tensile strength was observed at 1 wt.% of GO. Comparisons were made between experimental data and the Halpin–Tsai model predictions for the tensile strength and modulus of GO/PES composites. The effect of an orientation factor on model predictions was also acquired. The hydrophilicity of the nanocomposite was evaluated by assessing contact angle and enhanced wet ability of the films was obtained with increasing the amount of GO up to 1%. The morphology of the nanocomposites was investigated using scanning electron microscopy and transmission electron microscopy and the results revealed a good dispersion of GO in the PES matrix. The thermal behavior of the composite was also studied. Thermal stability of composites was increased by adding the GO. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The rheological behavior of nanocomposites based on multiwalled carbon nanotube (MWNT) with three commercial grades of ethylene methyl acrylate (EMA) copolymers containing 9, 24, and 30 wt% methyl acrylate (MA) was investigated under dynamic and steady shear flow (in a capillary) conditions. Storage modulus (in dynamic shear) value increases especially at higher frequency levels due to increased polymer‐filler interactions. Both the unfilled and filled composites exhibit rheological behavior of non‐Newtonian fluids. In both steady shear and capillary flow, the nanocomposites register a slightly higher viscosity than neat EMAs, with dependence on the MWNTs content. All systems with various loading of MWNTs represent an increase in elastic response with increasing frequency. The die swell decreases with the MWNTs loading. Dynamic and steady shear rheological properties register a good correlation in regard to the viscous versus elastic response of such systems inline with the Cox–Merz concept. Increased MA content leads to inferior dispersion of MWNTs in EMA matrix. Morphological studies exhibit that MWNTs become more aligned along longitudinal direction after extrusion leading to improved dispersion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Highly oriented, large area continuous composite nanofiber sheets made from surface-oxidized multiwalled carbon nanotubes (MWNTs) and polyacrylonitrile (PAN) were successfully developed using electrospinning. The preferred orientation of surface-oxidized MWNTs along the fiber axis was determined with transmission electron microscopy and electron diffraction. The surface morphology and height profile of the composite nanofibers were also investigated using an atomic force microscope in tapping mode. For the first time, it was observed that the orientation of the carbon nanotubes within the nanofibers was much higher than that of the PAN polymer crystal matrix as detected by two-dimensional wide-angle X-ray diffraction experiments. This suggests that not only surface tension and jet elongation but also the slow relaxation of the carbon nanotubes in the nanofibers are determining factors in the orientation of carbon nanotubes. The extensive fine absorption structure detected via UV/vis spectroscopy indicated that charge-transfer complexes formed between the surface-oxidized nanotubes and negatively charged (-CN[triple bond]N:) functional groups in PAN during electrospinning, leading to a strong interfacial bonding between the nanotubes and surrounding polymer chains. As a result of the highly anisotropic orientation and the formation of complexes, the composite nanofiber sheets possessed enhanced electrical conductivity, mechanical properties, thermal deformation temperature, thermal stability, and dimensional stability. The electrical conductivity of the PAN/MWNT composite nanofibers containing 20 wt % nanotubes was enhanced to approximately 1 S/cm. The tensile modulus values of the compressed composite nanofiber sheets were improved significantly to 10.9 and 14.5 GPa along the fiber winding direction at the MWNT loading of 10 and 20 wt %, respectively. The thermal deformation temperature increased with increased MWNT loading. The thermal expansion coefficient of the composite nanofiber sheets was also reduced by more than an order of magnitude to 13 x 10(-6)/ degrees C along the axis of aligned nanofibers containing 20 wt % MWNTs.  相似文献   

19.
Pristine multi-walled carbon nanotubes (MWNTs) were incorporated into poly(vinylidene fluoride) (PVDF), poly(methyl methacrylate) (PMMA), and PVDF/PMMA blends to achieve binary and ternary nanocomposites. MWNTs were more compatible with the PVDF matrix than with the PMMA-containing matrices. MWNT addition did not alter the development of α-form PVDF crystals in the binary/ternary composites. Nucleation and overall isothermal crystallization of PVDF were enhanced by the presence of MWNTs, and enhancements were optimal in the PVDF/MWNT binary composites. Avrami analysis revealed that addition of MWNTs led to more extensive athermal-type nucleation of PVDF, and that PMMA slightly decreased the crystal growth dimension of PVDF. The equilibrium melting temperature (Tm°) of PVDF increased in the binary composites but remained nearly constant in the ternary system. Thermal stability was enhanced in the binary/ternary composites, and enhancements were more evident in the air environment than in nitrogen. Rheological property measurements revealed that the intensely entangled chains of high-molecular weight PVDF dominated the rheological response of PVDF-included samples in the melt state. A (pseudo)network structure was developed in each of the PVDF-included samples as well as in the 1 phr MWNT-added PMMA/MWNT composite. The storage moduli of the PVDF, PMMA, and PVDF/PMMA:1/1 blend increased to 37%, 22% and 34%, respectively, at 40 °C after addition of 1 phr MWNT.  相似文献   

20.
Polyimide (PI)‐based nanocomposites containing aminophenyl functionalized multiwalled carbon nanotubes (AP‐MWCNTs) obtained through a diazonium salt reaction was successfully prepared by in situ polymerization. PI composites with different loadings of AP‐MWCNTs were fabricated by the thermal conversion of poly(amic acid) (PAA)/AP‐MWCNTs. The mechanical and electrical properties of the AP‐MWCNTs/PI composites were improved compared with those of pure PI due to the homogeneous dispersion of AP‐MWCNTs and the strong interfacial covalent bonds between AP‐MWNTs and the PI matrix. The conductivity of AP‐MWNTs/PI composites (5:95 w/w) was 9.32 × 10?1 S/cm which was about 1015 times higher than that of Pure PI. The tensile strength and tensile modules of the AP‐MWCNTs/PI composites with 0.5 wt % of AP‐MWCNTs were increased by about 77% (316.9 ± 10.5 MPa) and 25% (8.30 ± 1.10 GPa) compared to those of pure PI, respectively. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 960–966  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号