首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A new apparatus to measure simultaneously the density and viscosity of liquids has been designed and constructed based on the hydrostatic weighing and falling-body principles. The density and viscosity of monoethylene glycol (MEG), diethylene glycol (DEG), and triethylene glycol (TEG) and their binary, (50%MEG + 50%DEG), (50%MEG + 50%TEG), (50%DEG + 50%TEG), and ternary (33.33%MEG + 33.33%DEG + 33.34%TEG) mixtures have been measured over the temperature range from 293 K to 473 K and at atmospheric pressure. The expanded uncertainty of the density, pressure, temperature, and viscosity measurements at the 95% confidence level with a coverage factor of k = 2 is estimated to be 0.15% to 0.30%, 0.05%, 0.06 K, and 1.5% to 2.0% (depending on temperature and pressure ranges), respectively. The theoretically based Arrhenius–Andrade and Vogel–Tamman–Fulcher type equations were used to describe the temperature dependence of measured viscosities for pure polyethylene glycols and their mixtures.  相似文献   

2.
The (vapor + liquid) equilibrium data for binary system of (ethane + ethanol) at three temperatures (295, 303, and 313) K were measured using a designed pressure–volume–temperature (PVT) apparatus. A wide range of pressures, (1 to 5) MPa, were considered for the measurements. The phase composition, saturated density, and viscosity of liquid phase were measured for each pressure and temperature. The experimental (vapor + liquid) equilibrium data were compared with the modeling results obtained using the Peng–Robinson and Soave–Redlich–Kwong equations of state.  相似文献   

3.
The molar isobaric heat capacities of (methanol + 1-hexyl-3-methylimidazolium tetrafluoroborate) and (methanol + 1-methyl-3-octylimidazolium tetrafluoroborate) mixtures have been determined over the temperature range from 283.15 K to 323.15 K within the whole composition range. The excess molar heat capacities of investigated mixtures have been fitted to the Redlich–Kister equation at several selected temperatures. Positive deviations from the additivity of molar heat capacities have been observed in both examined systems. The results obtained have been discussed in terms of molecular interactions in binary mixtures.  相似文献   

4.
The aim of this paper is to report experimental densities, excess molar enthalpies and refractive indexes of the ternary system (propyl propanoate + hexane + toluene) and of the corresponding binary mixtures (propyl propanoate + toluene) and (hexane + toluene) at the temperature 298.15 K and atmospheric pressure, over the whole composition range. Also, the excess molar volumes and the changes in the refractive index on mixing have been calculated from the measured data for all mixtures.  相似文献   

5.
Density and viscosity measurements for binary mixtures of (1,1,2,2-tetrabromoethane + 1-pentanol, or + 1-hexanol, or + 1-heptanol, or + 1-octanol, or + 1-decanol) at T = (293.15 and 303.15) K, have been conducted at atmospheric pressure. The excess molar volumes VE, have been calculated from the experimental measurements, and the results were fitted to Redlich–Kister equation. The viscosity data were correlated with the model of Grunberg and Nissan, and McAllister four-body model. The excess molar volumes of (1,1,2,2-tetrabromoethane + 1-pentanol, or + 1-haxanol, or + 1-heptanol, or + 1-octanol) had a sigmoidal shape and the values varied from negative to positive with the increase in the molar fraction of 1,1,2,2-tetrabromoethane. The remaining binary mixture of (1,1,2,2-tetrabromoethane + 1-decanol) was positive over the entire composition range. The effects of the 1-alkanol chain length as well as the temperature on the excess molar volume have been studied. The results have been qualitatively used to explain the molecular interaction between the components of these mixtures.  相似文献   

6.
Density ρ, viscosity η, and refractive index nD, values for (tetradecane + benzene, + toluene, + chlorobenzene, + bromobenzene, + anisole) binary mixtures over the entire range of mole fraction have been measured at temperatures (298.15, 303.15, and 308.15) K at atmospheric pressure. The speed of sound u has been measured at T = 298.15 K only. Using these data, excess molar volume VE, deviations in viscosity Δη, Lorentz–Lorenz molar refraction ΔR, speed of sound Δu, and isentropic compressibility Δks have been calculated. These results have been fitted to the Redlich and Kister polynomial equation to estimate the binary interaction parameters and standard deviations. Excess molar volumes have exhibited both positive and negative trends in many mixtures, depending upon the nature of the second component of the mixture. For the (tetradecane + chlorobenzene) binary mixture, an incipient inversion has been observed. Calculated thermodynamic quantities have been discussed in terms of intermolecular interactions between mixing components.  相似文献   

7.
We report measurements of the speed of sound in mixtures of N-methyl-2-pyrrolidinone and methanol at temperatures between 298.15 K and 343.15 K and at pressures up to 60 MPa. The measurements were made using a dual path pulse-echo apparatus operating at a frequency of 5 MHz. We have also measured the isobaric specific heat capacity of each mixture as a function of temperature at ambient pressure, by means of a Setaram DSC III microcalorimeter. The experimental results have been combined with literature data for the density of the same mixtures as a functions of temperature at ambient pressure to obtain the density, isobaric specific heat capacity, and other thermodynamic properties at temperatures between 298.15 K and 343.15 K and at pressures up to 60 MPa. Detailed comparisons with the literature data are presented.  相似文献   

8.
Several physical properties were determined for the ionic liquids 3-methyl-N-butylpyridinium tetracyanoborate ([3-mebupy]B(CN)4) and 1-butyl-1-methylpyrrolidinium tetracyanoborate ([1-mebupyr]B(CN)4), viz. liquid density, viscosity, surface tension, thermal stability, and heat capacity over the temperature range from 283.2 K to 475.2 K and at 0.1 MPa. The density and the surface tension were well correlated with linear equations and the viscosity with a Vogel–Fulcher–Tamman equation. The IL [3-mebupy]B(CN)4 is stable up to a temperature of 480 K and the IL [1-mebupyr]B(CN)4 up to a temperature of 548 K.Ternary data for the systems {(benzene + n-hexane), or (toluene + n-heptane), or (p-xylene + n-octane + [3-mebupy]B(CN)4)} were determined at T = 303.2 K and 328.2 K and p = 0.1 MPa. All experimental data were well correlated with the NRTL model. The values of the experimental and calculated aromatic/aliphatic selectivity are in good agreement with each other. The LLE data of [1-mebupyr]B(CN)4 were only measured in a 10 vol% aromatic feed for the three systems.  相似文献   

9.
Density and viscosity were determined for binary mixtures of {hyperbranched polymer, a fatty acid modified dendritic polymer Boltorn U3000 (B-U3000) + 1-alcohol (1-butanol, 1-hexanol, and 1-octanol)} at T = (298.15, 308.15, 318.15, 328.15, and 338.15) K and of {B-U3000 + tert-butyl-methylether (MTBE)} at T = (298.15, 308.15, and 318.15) K and ambient pressure. The temperature dependence of density and viscosity for these systems can be described by linear regression and by the Vogel–Fucher–Tammann equation, respectively. Excess volumes were discussed in a function of mass fractions. Viscosity deviations were calculated and correlated by the Redlich–Kister polynomial expansions using also the mass fractions. The polynomial correlations describe the variation of viscosity with composition. A qualitative discussion on these quantities in terms of molecular interactions is reported.  相似文献   

10.
《Fluid Phase Equilibria》2006,239(2):146-155
This work reports the measured density, ρ, and viscosity, η, values of liquid mixtures of tetrahydrofuran (1) + 1-chlorobutane (2) + 2-butanol (3) at temperatures of 283.15, 298.15 and 313.15 K over a range of mole fractions and atmospheric pressure. Excess molar volume, VE, viscosity deviations, Δη, and excess free energies of activation of viscous flow, ΔG*E, have been calculated from experimental data and fitted to Cibulka, Singh et al. and Nagata and Sakura equations. The results were analyzed in terms of the molecular interaction between the components of the mixtures. Excess molar volumes and viscosity deviations were predicted from binary contributions using geometrical solution models, Tsao and Smith; Jacob and Fitzner; Kholer; Rastogi et al.; Radojkovic et al. Finally, experimental results are compared with those obtained by applying group-contribution method proposed by Wu.  相似文献   

11.
In this work, our objective is to contribute to the knowledge of the mixtures (alcohol + polyalkyl ether glycol) used in absorption refrigeration systems and heat pumps. The determination of different thermophysical properties is essential to understand the interactions among different molecules in liquid mixtures. Therefore, experimental data of speed of sound and density together with calculated values of isentropic compressibility for the refrigerant-absorbent system (methanol + polyethylene glycol dimethyl ether 250) (or Pegdme 250) have been gathered here over the whole range of composition at temperatures from T=293.15 to 333.15 K and atmospheric pressure. The two previous experimental properties were measured with a digital vibrating tube analyser Anton Paar DSA-48. Also, the excess molar volumes and the increments of the speed of sound and the isentropic compressibility have been determined for each composition and they were fitted to a variable-degree polynomial equation.  相似文献   

12.
A single-sinker densimeter was built to specifically investigate the (p, ρ, T, x) behavior of fluid mixtures relevant for carbon capture and storage (CCS). Due to the use of a magnetic-suspension coupling, the densimeter enables measurements over the temperature range from (273.15 to 423.15) K with pressures up to 35 MPa. A comprehensive analysis of the experimental uncertainties was undertaken. The expanded uncertainties (k = 2) are 35 mK for temperature, 3.39 kPa for pressure, and 0.033% for density determination. The apparatus was used for measurements on the binary systems (nitrogen + carbon dioxide) and (argon + carbon dioxide). The compositions for both systems were (0.05 and 0.01) mole fraction carbon dioxide. Density measurements were carried out at temperatures from (298.15 to 423.15) K with pressures from (11 to 31) MPa. The relative combined expanded uncertainty (k = 2) in density was 0.15% for the (nitrogen + carbon dioxide) mixtures and 0.12% for the (argon + carbon dioxide) mixtures. A major contribution to this uncertainty emerged from the uncertainty in the gas mixture composition. The new experimental data were compared to the GERG-2008 equation of state (EOS) for natural-gas mixtures as implemented in the NIST REFPROP database and to the EOS-CG, another new Helmholtz energy model for CCS mixtures as implemented in the TREND software package of Ruhr-University Bochum. Relative deviations were mostly within 0.5%. The agreement of the new density values with the only available literature data closest to the composition range under study was better than 0.1%.  相似文献   

13.
《Fluid Phase Equilibria》2005,233(2):144-150
Single- and two-phase binary mixtures of near critical methane + butane and methane + decane systems have been investigated at 310.95 K. A capillary tube viscometer was used to measure the viscosity and a high-pressure densitometer was employed for density measurements. The mixture was prepared gravimetrically and a direct sampling system was used to measure the composition of equilibrium phases in the two-phase region by gas chromatography. The meniscus height technique was used to generate the interfacial tension data.  相似文献   

14.
Density and viscosity were determined for binary mixtures of {hyper-branched polymer, Boltorn H2004 (B-H2004) + 1-alcohol (1-butanol, 1-hexanol, and 1-octanol)} at T = (298.15, 308.15, 318.15, 328.15, and 338.15) K and of {B-H2004 + methyl tert-butyl ether (MTBE)} at T = (298.15, 308.15, and 318.15) K and ambient pressure. The temperature dependence of density and viscosity is described by linear regression and by the Vogel–Fucher–Tammann equation, respectively. Excess volumes for the system {B-H2004 + MTBE} are presented as a function of mass fraction. Viscosity deviations were calculated and correlated by the Redlich–Kister polynomial expansions using also the mass fractions. The polynomial correlations describe the variation of viscosity with composition. A qualitative discussion on these quantities in terms of molecular interactions is reported.  相似文献   

15.
New measurements are reported for the densities of choline chloride: urea (REL) deep eutectic solvent and its aqueous mixtures over the temperature range (298.15 to 323.15) K and pressures up to 50 MPa. The experimental data were used to derive other properties such as isothermal compressibility, isobaric expansivity and excess molar volume. A Tait-type equation was used to correlate accurately the high-pressure density data to temperature, T, pressure, P, and composition, x. The excess molar volumes of {REL (1) + H2O (2)} mixtures were also investigated and represented as a function of all three variables, T, P, x, using an empirical equation. Results indicate that the correlations used in this work can be satisfactorily used to predict the densities of the studied systems at different conditions of temperature, pressure and composition.  相似文献   

16.
Densities of binary mixtures of N,N-dimethylacetamide (DMA) with water (H2O) or water-d2 (D2O) were measured at the temperatures from T=277.13 K to T=318.15 K by means of a vibrating-tube densimeter. The excess molar volumes VmE, calculated from the density data, are negative for the (H2O + DMA) and (D2O + DMA) mixtures over the entire range of composition and temperature. The VmE curves exhibit a minimum at x(DMA)≅0.4. At each temperature, this minimum is slightly deeper for the (D2O + DMA) mixtures than for the corresponding (H2O + DMA) mixtures. The difference between D2O and H2O systems becomes smaller when the temperature increases. The VmE results were correlated using a modified Redlich–Kister expansion. The partial molar volume of DMA plotted against x(DMA) goes through a sharp minimum in the water-rich region around x(DMA)≅0.08. This minimum is more pronounced the lower the temperature and is deeper in D2O than in H2O at each temperature. Again, the difference becomes smaller as the temperature increases. The excess expansion factor αE plotted against x(DMA) exhibit a maximum in the water rich region of the mole fraction scale. At each temperature, this maximum is higher for the (D2O + DMA) mixtures than for the corresponding (H2O + DMA) mixtures, and the difference becomes smaller as the temperature increases. At its maximum, αE can be even more than 25 per cent of total value of the cubic expansion coefficient α in the (H2O + DMA) and (D2O + DMA) mixtures.  相似文献   

17.
Total vapour pressures and excess molar volumes, measured at the temperature 313.15 K, are reported for three binary mixtures (2-pyrrolidone + water), (2-pyrrolidone + methanol) and (2-pyrrolidone + ethanol). The results are compared with previously obtained data for binary mixtures (amide + A), where amide=N-methylformamide, N,N-dimethylformamide and N-methylacetamide, and A= water, methanol, and ethanol.  相似文献   

18.
The improved isopiestic method has been used to obtain activities of water for aqueous solutions of poly(ethylene glycol) 400/NaCl at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K. From these measurements, values of the vapour pressure of solutions were determined. The effect of temperature on the (vapour + liquid) equilibrium of {poly(ethylene glycol) + NaCl + H2O} systems has been studied. It was found that the slope of the constant activity lines for water increased with increasing temperature. The results have been discussed on the basis of the effect of temperature on the hydrophobicity of the polymer. Also it was found that the vapour pressure depression for an aqueous (PEG + NaCl) system is more than the sum of those for the corresponding binary solutions. Furthermore, the segment-based local composition Wilson model has been used for the correlation of the experimental water activity data. The agreement between the correlation and the experimental data are good.  相似文献   

19.
Experimental values of density, viscosity, and refractive index at T = (298.15, 303.15, and 308.15) K while the speed of sound at T = 298.15 K in the binary mixtures of methylcyclohexane with n-hexane, n-heptane, n-octane, n-nonane, n-decane, n-dodecane, and iso-octane are presented over the entire mole fraction range of the binary mixtures. Using these data, excess molar volume, deviations in viscosity, molar refraction, speed of sound, and isentropic compressibility are calculated. All the computed quantities are fitted to Redlich and Kister equation to derive the coefficients and estimate the standard error values. Such a study on model calculations in addition to presentation of experimental data on binary mixtures are useful to understand the mixing behaviour of liquids in terms of molecular interactions and orientational order–disorder effects.  相似文献   

20.
Densities and kinematic viscosities have been measured for (1-butanol + 1,4-butanediol) over the temperature range from (298.15 to 318.15) K. The speeds of sound within the temperature range from (293.15 to 318.15) K have been measured as well. Using these results and literature values of isobaric heat capacities, the molar volumes, isentropic and isothermal compressibility coefficients, molar isentropic and isothermal compressibilities, isochoric heat capacities as well as internal pressures were calculated. Also the corresponding excess and deviation values (excess molar volumes, excess isentropic and isothermal compressibility coefficients, excess molar isentropic and isothermal compressibilities, different defined deviation speed of sound and dynamic viscosity deviations) were calculated. The excess values are negative over the whole concentration and temperature range. The excess and deviation values are expressed by Redlich–Kister polynomials and discussed in terms of the variations of the structure of the system caused by the participation of the two different alcohol molecules in the dynamic intermolecular association process through hydrogen bonding at various temperatures. The predictive abilities of Grunberg–Nissan and McAllister equations for viscosities of mixtures have also been examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号