首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The densities ρ and coefficients of compressibility k = ΔV/V 0 of a binary mixture {ethylene glycol (1) + tert-butanol (2)} in the temperature range of 278.15–323.15 K and pressures of 0.1–100 MPa over the entire range of compositions of liquid phase state are measured. Found that the coefficients of compressibility k of the mixture increase both with an increase in the concentration of tert-butanol and with a rise in temperature and pressure. The excess molar volumes of the mixture, apparent, partial molar volumes, and limiting partial molar volumes of the components are calculated. It is showed that the excess molar volumes of the mixture are negative and decrease when the pressure increases. The excess molar volumes are described by the Redlich-Kister equation. The partial molar volumes of ethylene glycol sharply decrease in the range of high concentrations of tert-butanol. The dependences of partial molar volumes of ethylene glycol are characterized by the presence of a region of temperature inversion. The “negative compressibility” of the limiting partial volumes of ethylene glycol is revealed.  相似文献   

2.
We present a systematic investigation on the enthalpic assessment of the interactions operating between the cation and anion of four imidazolium ionic liquids with aqueous and various nonaqueous solvents. Accurate experimental information gathered with the help of an isothermal titration calorimeter at 298.15 K has been analyzed for excess partial molar enthalpy of the ionic liquid, H(IL)(E), in terms of hydrophobic and solvation effects. The variations in the limiting excess partial molar enthalpy of the ionic liquid, H(IL)(E, ∞), have been correlated with solvent properties. We have quantified the enthalpic effects due to dissociation of ionic liquids in very dilute solutions and to clathrate formation with the increasing concentration of ionic liquid. A change in enthalpic behavior from endothermic to exothermic is observed on increasing the carbon chain length attached to the imidazolium ring. The solvent reorganization around the cationic species has been unraveled by employing the ionic liquid interaction parameters called as H(IL-IL)(E) deduced from the H(IL)(E) data. The apparent relative molar enthalpy, φ(L), derived from H(IL)(E) data has been examined in the light of the specific ion interaction theory as advanced by Pitzer with accurate results.  相似文献   

3.
From density measurements over the whole composition range at 25 and 40°C excess molar volumes for binary mixtures of 1,4-dichlorobutane with l-butanol, 2-butanol, 2-methyl-l-propanol or 2-methyl-2-propanol are calculated. VE results were fitted by the method of least squares to a smoothing equation. Excess partial molar volumes and limiting excess partial molar volumes at 25° are also calculated.  相似文献   

4.
Well-known Picker flow microcalorimeters for the differential measurements of volumetric heat capacities have been employed in conjunction with vibrating tube densimeters to determine the molar heat capacity, volume, and the apparent properties in dilute aqueous solutions for 17 organic solutes of moderate hydrophobicity. The dependence on concentration of the apparent properties allowed the limiting partial molar quantities at infinite dilution to be extrapolated and the limiting partial molar excess quantities to be evaluated. Comparison with available literature data shows good agreement. The application of group contribution rules to the limiting partial properties has been tested using the original method and parameters proposed by Cabani et al. The predicted values of the partial molar volumes are in fair agreement with the present data except for some less common solutes. With partial molar heat capacities, the agreement is less satisfactory. To improve the performance of the method, missing parameters for some types of monofunctional and bifunctional molecules have been evaluated.  相似文献   

5.
The densities of solutions of 1-octanol, 1-nonanol, and 1-decanol in cyclohexane up to concentrations of 1.56 mol kg–1 were measured at temperatures between 20 and 60°C. The apparent molar volumes and expansibilities were found to be linearly dependent on solute concentration. The excess molar volume and the excess thermal expansion coefficient of the solute were derived from the partial molar volume of the solute at infinite dilution and the solute densities. In addition, the limiting partial molar volume of the solute is discussed in terms of the scaled particle theory.  相似文献   

6.
The thermodynamic properties play a crucial role in the development of new solder materials. In this work a calorimetric investigation of the ternary Cu-Sn-Bi system was carried out by using a Calvet-type calorimeter in order to obtain the molar limiting partial enthalpy of Cu in liquid Sn-Bi alloys with different compositions. The molar limiting partial enthalpy of Cu at 820 K was determined in the Sn-75 at% Bi, Sn-43 at% Bi and Sn-26 at% Bi liquid bath showing an endothermic behaviour. The results are compared with the literature data available for Cu in the pure liquid Bi and Sn and then discussed.  相似文献   

7.
Calculation of excess properties in methyl benzoate + n-Hexane binary liquid mixtures at (303.15, 308.15 and 313.15) K from experimental viscosity and density values was presented in earlier work. Investigations of these experimental values to test correlation quality of different equations as well as their corresponding relative functions were also reported. Considering the quasi-equality between the enthalpy of activation of viscous flow ΔH* and the viscosity Arrhenius activation energy Ea, here we can define partial molar activation energy Ea1 and Ea2 for methyl benzoate with n-Hexane, respectively, along with their individual contribution separately. Correlation between Arrhenius parameters brings to light interesting Arrhenius temperature with a comparison to the temperature of vaporisation in the liquid vapour equilibrium, and the limiting corresponding partial molar properties that can permit us to predict value of the boiling points of the pure components. New empirical equations for estimating the boiling temperature are proposed.  相似文献   

8.
用比重瓶法测定了293.15 K时1-甲基咪唑醋酸盐([Mim]Ac)/1,3-二甲基咪唑醋酸盐([Mmim]Ac)/1-乙基-3-甲基咪唑醋酸盐([Emim]Ac)-乙醇(EtOH)二元体系在全组成范围内的密度. 计算出[Mim]Ac/[Mmim]Ac/[Emim]Ac和EtOH的表观摩尔体积和体系的超额摩尔体积. 用三参数多项式关联拟合了表观摩尔体积与摩尔分数的关系,外推出组分的极限偏摩尔体积和摩尔体积. [Mim]Ac/[Mmim]Ac/[Emim]Ac和EtOH的摩尔体积的外推值与实验值分别在±0.07和±0.04 cm3/mol范围内相一致. 计算出了[Mim]Ac/[Mmim]Ac/[Emim]Ac和EtOH分别在无限稀溶液中的溶剂化系数. 用Redlich-Kister 方程关联拟合了超额摩尔体积与摩尔分数的关系. 分别根据极限偏摩尔体积、摩尔体积与极限偏摩尔体积的差值、溶剂化系数和超额摩尔体积对照讨论了分子间相互作用的强弱. 结果显示,在[Mim]Ac/[Mmim]Ac/[Emim]Ac的浓度无限稀溶液中,[Mim]Ac/[Mmim]Ac/[Emim]Ac-EtOH分子对间相互作用的强弱顺序为[Mim]Ac-EtOH>[Mmim]Ac-EtOH >[Emim]Ac-EtOH;在EtOH的浓度无限稀溶液中,以及体系中[Mim]Ac/[Mmim]Ac/[Emim]Ac的摩尔分数在0.15~0.95间时,[Mim]Ac/[Mmim]Ac/[Emim]Ac-EtOH分子对间相互作用的强弱顺序都为[Emim]Ac-EtOH>[Mmim]Ac-EtOH>[Mim]Ac-EtOH.  相似文献   

9.
From the density of solutions of water in 1-hexanol, 1-octanol, 1-decanol, and cyclohexanol, measured at 298.15K, the limiting partial molar volume and the excess limiting partial molar volume of water was estimated. The limiting partial molar volume of water in alcohols was discussed in terms of the void space created by the addition of water to alcohol and by the packing density of water. On the basis of the Kirkwood-Buff theory and the activity of water in alcohols an average aggregation number of water molecules, as well as the number of the excess alcohol molecules in the surroundings of the water molecule was calculated. The solvation ability of the investigated alcohols was estimated as the difference in the solvation Gibbs energy of an alcohol molecule in solution relative to the pure alcohol. The observed difference was mainly ascribed to an indirect effect caused by water molecules on the alcohol structure and to a lesser extent to the hydrogen bonding of water to alcohol molecules. The limiting partial molar volume of water was also interpreted in terms of scaled particle theory and the various volume contributions arising from dispersion, dipole–dipole, and inductive interactions between water and an alcohol molecule were calculated.  相似文献   

10.
Summary. From the density of solutions of water in 1-hexanol, 1-octanol, 1-decanol, and cyclohexanol, measured at 298.15K, the limiting partial molar volume and the excess limiting partial molar volume of water was estimated. The limiting partial molar volume of water in alcohols was discussed in terms of the void space created by the addition of water to alcohol and by the packing density of water. On the basis of the Kirkwood-Buff theory and the activity of water in alcohols an average aggregation number of water molecules, as well as the number of the excess alcohol molecules in the surroundings of the water molecule was calculated. The solvation ability of the investigated alcohols was estimated as the difference in the solvation Gibbs energy of an alcohol molecule in solution relative to the pure alcohol. The observed difference was mainly ascribed to an indirect effect caused by water molecules on the alcohol structure and to a lesser extent to the hydrogen bonding of water to alcohol molecules. The limiting partial molar volume of water was also interpreted in terms of scaled particle theory and the various volume contributions arising from dispersion, dipole–dipole, and inductive interactions between water and an alcohol molecule were calculated.  相似文献   

11.
A concise thermodynamic formalism is developed for the molar isentropic thermal expansion, ES,m = ( partial differential Vm/ partial differential T)(Sm,x), and the ideal and excess quantities for the molar, apparent molar and partial molar isentropic expansions of binary liquid mixtures. Ultrasound speeds were determined by means of the pulse-echo-overlap method in aqueous mixtures of 2-methylpropan-2-ol at 298.15 K over the entire composition range. These data complement selected extensive literature data on density, isobaric heat capacity and ultrasound speed for 9 amphiphile (methanol, ethanol, propan-1-ol, propan-2-ol, 2-methylpropan-2-ol, ethane-1,2-diol, 2-methoxyethanol, 2-ethoxyethanol or 2-butoxyethanol)-water binary systems, which form the basis of tables listing molar and excess molar isobaric expansions and heat capacities, and molar and excess molar isentropic compressions and expansions at 298.15 K and at 65 fixed mole fractions spanning the entire composition range and fine-grained in the water-rich region. The dependence on composition of these 9 systems is graphically depicted for the excess molar isobaric and isentropic expansions and for the excess partial molar isobaric and isentropic expansions of the amphiphile. The analysis shows that isentropic thermal expansion properties give a much stronger response to amphiphile-water molecular interactions than do their isobaric counterparts. Depending on the pair property-system, the maximum excess molar isentropic value is generally twenty- to a hundred-fold greater than the corresponding maximum isobaric value, and occurs at a lower mole fraction of the amphiphile. Values at infinite dilution of the 9 amphiphiles in water are given for the excess partial molar isobaric heat capacity, isentropic compression, isobaric expansion and isentropic expansion. These values are interpreted in terms of the changes occurring when amphiphile molecules cluster into an oligomeric form. Present results are discussed from theoretical and experimental thermodynamic viewpoints. It is concluded that isentropic thermal expansion properties constitute a new distinct resource for revealing particular features and trends in complex mixing processes, and that analyses using these new properties compare favourably with conventional approaches.  相似文献   

12.
Densities and refractive indices have been measured for N-p-tolylbenzohydroxamic acid (p-TBHA) in dimethyl sulfoxide (DMSO) as a function of concentration at (298.15, 303.15, 308.15, 313.15 and 318.15) K. The apparent molar volumes and partial molar volumes were obtained from these density data. The limited partial molar expansivities have been calculated from the temperature dependence of the limiting partial molar volume. The molar refractions were calculated from the experimental refractive index values for p-TBHA in DMSO. The excess volumes, deviations of the refractive indices, and molar refractions were also calculated. The results are discussed in terms of molecular interactions.  相似文献   

13.
A Picker flow microcalorimeter was employed in conjunction with asymmetric syringe-type pumps to measure heats of mixing of highly dilute aqueous solutions of organic solvents. These data were used in turn to determine limiting partial molar excess enthalpies of the examined solvents in water. The measurements were carried out at 298.15 K for 29 common, oxygen and/or nitrogen containing solvents exhibiting complete miscibility with water. Except for only one compound, formamide, the limiting partial molar excess enthalpies are exothermic indicating that the process of dissolution is energetically favored. Comparison to literature data (in most cases to solution enthalpies at infinite dilution measured by batch calorimetry) proved the technique applied to be sufficiently accurate.  相似文献   

14.
《Fluid Phase Equilibria》1987,32(2):195-203
Partial molar volumes at 298.15 K in 1—octanol have been determined for some hydrocarbons, ethers, ketones, and water from density measurements carried out with a vibrating-tube density meter.In the transfer process from the pure liquid state to the infinitely dilute solution in 1—octanol, a slight shrinkage is generally observed for solutes showing density values lower than that of the solvent. On the contrary, for solutes with higher density values, a weak expansion is produced.Comparisons are made among the partial molar volumes of organic solutes in 1—octanol, in water, and in other organic solvents. The case of water as a solute in 1—octanol and in many other organic liquids is carefully considered. In non-polar solvents the value of the limiting partial molar volume of water is always larger in respect to the value of the molar volume of pure water, but in polar solvents the contrary occurs. An explanation of this phenomenon is provided and a rationale is given to the value of the limiting partial molar volume of water in 1—octanol and to the trend exhibited by the partial molar volume of water in the 1—octanol/water mixture as water concentration is increased.  相似文献   

15.
把二元溶液的过剩内能(excess energy)分成溶剂-溶剂、溶剂-溶质及溶质-溶质相互作用部分。利用集团展开方法给出了二元溶液在正则系综的配分函数的表达式,利用该表达式得到了溶质的偏摩尔内能(partial molar energy)和偏摩尔熵(partial molar entropy)的表达式。在无限稀溶液情形,过剩偏摩尔内能的溶剂-溶剂部分又称重组织内能(reorganization energy),它反映了溶质存在时对其周围溶剂分子之间的相互作用能的影响。研究表明,在溶质的粒子数密度相对较大时,溶质分子之间的相互作用将影响过剩偏摩尔内能的溶剂-溶剂部分,对于稀溶液,过剩偏摩尔内能的溶剂-溶剂部分与溶质的摩尔分数成线性关系。对低密度二元溶液,溶质的过剩偏摩尔内能和过剩偏摩尔熵也与溶质的摩尔分数成线性关系。  相似文献   

16.
Calculation of excess properties in N,N-dimethylacetamide + 2-methoxyethanol binary mixtures at (298.15, 308.15 and 318.15) K from experimental density, viscosity and sound velocity values were presented in previous work. Applications of these experimental values to test different correlation equations as well as their corresponding relative functions were also reported. Considering the quasi-equality between the Arrhenius activation energy Ea and the enthalpy of activation of viscous flow ΔH*, here we can define partial molar activation energy Ea1 and Ea2 for N,N-dimethylacetamide and 2-methoxyethanol, respectively, along with their individual contribution separately. Correlation between Arrhenius parameters reveals interesting Arrhenius temperature with a comparison to the vaporisation temperature in the liquid vapour equilibrium, and the limiting corresponding partial molar properties that can permit us to estimate the boiling points of the pure components.  相似文献   

17.
The solubility of water and carbon dioxide in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([hmim][Tf2N]) is computed using atomistic Monte Carlo simulations. A newly developed biasing algorithm is used to enable complete isotherms to be computed. In addition, a recently developed pairwise damped electrostatic potential calculation procedure is used to speed the calculations. The computed isotherms, Henry's Law constants, and partial molar enthalpies of absorption are all in quantitative agreement with available experimental data. The simulations predict that the excess molar volume of CO2/ionic liquid mixtures is large and negative. Analysis of ionic liquid conformations shows that the CO2 does not perturb the underlying liquid structure until very high CO2 concentrations are reached. At the highest CO2 concentrations, the alkyl chain on the cation stretches out slightly, and the distance between cation and anion centers of mass increases by about 1 angstroms. Water/ionic liquid mixtures have excess molar volumes that are also negative but much smaller in magnitude than those for the case of CO2.  相似文献   

18.
Densities of glycerol (1) + tert-butanol (2) mixtures were measured over the temperature range 293.15 to 348.15 K at atmospheric pressure, over the entire composition range, with a vibrating tube densimeter. Excess molar volumes, apparent and partial molar volumes of glycerol and tert-butanol, thermal isobaric expansivities of the mixture and partial molar expansivities of the components were calculated. The excess molar volumes of the mixtures are negative at all temperatures, and deviations from ideality increase with increasing temperature. Excess molar volumes were fitted to the Redlich–Kister equation. Partial molar volumes of glycerol decrease with increasing tert-butanol concentration. The temperature dependence of the partial molar volumes of glycerol is characterized by an inversion at x 2≈0.7. “Negative expansion” of the limiting partial volumes of glycerol was observed.  相似文献   

19.
At room temperature, the 1-decyl-3-methylimidazolium bromide (DMImBr) is a long alkyl chain imidazolium ionic liquid miscible with water and forming a gel zone between 5 and 40% w/w H2O. We measured the density of the liquid mixtures of water and DMImBr. We determined the apparent molar volume of the molten salt for dilute solutions. For the concentrated solutions the partial molar volume of each component was evaluated by a perturbation method. These results are shown to be substantially different from those obtained with a short chain bromide ionic liquid, 1-butyl-3-methylimidazolium bromide (BMImBr). The amphiphilic ionic liquid (DMImBr) has been shown to form micelles and its critical micelle concentration (cmc) has been determined. Below the cmc, the Debye–Hückel limiting law for 1:1 electrolytes describes very accurately the behavior of low concentrations of the DMImBr salt in water. Above the cmc, the partial molar volume of the micellized monomer was approximately equal to the molar volume of the pure fused salt. The partial molar volume of water in these mixtures was similar to that of pure water. The concentrated solutions behave like mixtures of interpenetrated phases.  相似文献   

20.
The quasichemical model of hydration have been used to calculate the speed of ultrasound in binary solutions of water and nonelectrolyte. The model has been confined to systems that exhibit a maximum in the ultrasonic velocity vs. nonelectrolyte concentration. The parameters of the model are the hydration equilibrium constant, the nonelectrolyte hydration number, and the molar volume and compressibility of the hydrated nonelectrolyte. These have been fitted to experimental results by the method of least squares. The model calculations reproduce qualitatively the ultrasonic velocity as a function of nonelectrolyte concentration. The calculated maximum of the ultrasonic velocity is generally too low, but the nonelectrolyte concentration at which this maximum occurs agrees well with experiment.Addition of a third component shift the velocity maximum. The quasichemical model has also been used to calculate this shift. These calculations have been based on the parameters developed for the binary system. The shift on the nonelectrolyte concentration scale is reproduced satisfactorily, but the shift of the maximal value of the ultrasonic velocity is less accurately predicted by the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号