首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work presents (vapor + liquid) equilibrium (VLE) of binary mixtures containing methanol or ethanol and three imidazolium based ionic liquids: 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium acetate, and 1-butyl-3-methylimidazolium hydrogen sulfate. VLE measurements were carried out over the whole range of composition between (283.15 and 298.15) K using a static apparatus. Activity coefficients γi of these solvents in the ionic liquids have been determined from the VLE data and correlated using the NRTL model. The results show that the NRTL model can be applied successfully with systems containing ionic liquids.  相似文献   

2.
The osmotic coefficients of aqueous calcium chloride solutions were experimentally determined atT =  313.15 K by the isopiestic method. Magnesium chloride served as the isopiestic standard for the calculation of osmotic coefficients. The molality range covered in this study correspond to about 0.1mol · kg  1to 3.0mol · kg  1. In addition, the osmotic coefficients of aqueous mixtures of calcium chloride and magnesium chloride were determined over the range of ionic strength levels of about 0.1mol · kg  1to 9mol · kg  1and at various mole fractions. The results obtained were correlated by the Pitzer equation.  相似文献   

3.
《Fluid Phase Equilibria》2006,240(1):114-121
Osmotic coefficients of the solutions of three divalent transition metal chlorides (MCl2; M = Mn, Co, Ni) in methanol and ethanol have been measured by isopiestic method at 298.15 K. Vapor pressures of the solutions have been evaluated from osmotic coefficients and their depression was used for qualitative deduction of the solute–solvent interactions occurring in these solutions. The osmotic coefficients have been correlated using local composition models (including electrolyte non random two liquid (e-NRTL), non random factor (NRF) and modified NRTL (mNRTL) models) and the Pitzer model. The capability of the considered models was compared on the basis of the standard deviation in osmotic coefficients. The models give reliable results in correlation of the osmotic coefficients. However, the results show that the Pitzer and the mNRTL models successfully correlate the osmotic coefficients, however e-NRTL and NRF models give larger standard deviations.  相似文献   

4.
The purpose of this study is to present a model for the prediction of water activity in multicomponent aqueous solutions containing a common ion from available binary data. The hygrometric method has been used to measure relative humidities for the aqueous electrolyte mixture (NaCl  +  KCl)(aq) at total molalities ranging from 0.2 mol · kg  1to saturation for different molal ratiosr of NaCl(aq) to KCl(aq) with r =  (0.2, 0.5, 1, 2, 3, and 4) at T =  298.15 K. The data obtained have been used to determine water activities and osmotic coefficients. The results show that the values of water activities and osmotic coefficients calculated with the proposed model are close to the experimental ones. This model is also compared with four other models (RS, Pitzer, RWR, and LS II) over the range of the studied total molalities. From the measurements, the activity coefficients of NaCl(aq) and KCl(aq) in the mixture have also been determined.  相似文献   

5.
The osmotic and activity coefficients and vapour pressures of binary mixtures containing 1-propanol, or 2-propanol and imidazolium-based ionic liquids with bis(trifluoromethylsulfonyl)imide as anion (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, C2MimNTf2, 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide, C3MimNTf2, and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, C4MimNTf2) were determined at T = 323.15 K using the vapour pressure osmometry technique. The experimental osmotic coefficients were correlated using the extended Pitzer model modified by Archer and the MNRTL model, obtaining standard deviations lower than 0.033 and 0.064, respectively. The mean molal activity coefficients and the excess Gibbs free energy for the mixtures studied were calculated from the parameters of the extended Pitzer model modified by Archer. Besides the effect of the alkyl-chain of the cation, the effect of the anion can be assessed comparing the experimental results with those previously obtained for imidazolium ionic liquids with sulphate anions.  相似文献   

6.
Static dielectric constants of aqueous solutions of methanol, ethanol and acetic acid at T = 293.15 K and 91.3 kPa were measured at weak electromagnetic field (≪0.001 V) and (≪60 Hz). The static dielectric measurements have been achieved by using the new set up presented in the previous work based on a low-pass filter. From the experimental data, excess dielectric constants, ɛE have been calculated and reported. An empirical polynomial equation was used for correlating the data of the dielectric constants for the aqueous solutions. In addition, the measured static dielectric constants data have been calculated on the basis of the empirical modification of the Kirkwood theory for multicomponent systems. According to the average absolute deviations obtained between experimental and calculated data, the calculated dielectric constants of aqueous solutions studied in this work are generally in good agreement with the experimental data.  相似文献   

7.
Measurement of osmotic coefficients of binary mixtures containing several primary and secondary alcohols (1-propanol, 2-propanol, 1-butanol, 2-butanol, and 1-pentanol) and the pyridinium-based ionic liquid 1,3-dimethylpyridinium methylsulfate were performed at T = 323.15 K using the vapor pressure osmometry technique, and from experimental data, vapor pressure, and activity coefficients were determined. The extended Pitzer model modified by Archer, and the NRTL model modified by Jaretun and Aly (MNRTL) were used to correlate the experimental osmotic coefficients, obtaining standard deviations lower than 0.017 and 0.054, respectively. From the parameters obtained with the extended Pitzer model modified by Archer, the mean molal activity coefficients and the excess Gibbs free energy for the studied binary mixtures were calculated. The effect of the cation is studied comparing the experimental results with those obtained for the ionic liquid 1,3-dimethylimidazolium methylsulfate.  相似文献   

8.
The mixed aqueous electrolyte system of ammonium and sodium chlorides has been studied by the hygrometric method at the temperature 298.15 K. The relative humidities of this system were measured at total molalities from 0.3mol · kg  1 to 6 mol · kg  1for different ionic-strength fractions of NH 4Cl with y =  (0.33, 0.50, and 0.67). The data obtained allow the deduction of new water activities and osmotic coefficients. The experimental results are compared with the predictions of the extended composed additivity model proposed in our previous work, the Robinson–Stokes, Reilly–Wood–Robinson, and Lietzke–Stoughton models. From these measurements, the new Pitzer mixing ionic parameters were determined and used to predict the solute activity coefficients in the mixture.  相似文献   

9.
This work reports the results of a thermodynamic investigation of the ternary mixed-electrolyte system (CsCl + CaCl2 + H2O). The activity coefficients of this mixed aqueous electrolyte system have been studied with the electromotive force measurement (EMF) of the cell: Cs ion-selective electrode (ISE)|CsCl(mA), CaCl2(mB), H2O|Ag/AgCl at T = 298.15 K and over total ionic strengths from (0.01 to 1.50) mol · kg?1 for different ionic strength fractions yB of CaCl2 with yB = (0, 0.2, 0.4, 0.6, and 0.8). The cesium ion-selective electrode (Cs-ISE) and the Ag/AgCl electrode used in this work were made in our laboratory and had a good Nernst response. The experimental results obey the Harned rule, and the Pitzer model can be used to describe this ternary system satisfactorily. The osmotic coefficients, excess Gibbs free energies and activities of water of the mixtures were also calculated.  相似文献   

10.
The water activities of aqueous electrolyte mixture (NaCl + KCl + LiCl + H2O) were experimentally determined at T = 298.15 K by the hygrometric method at total ionic-strength from 0.4 mol · kg−1 to 6 mol · kg−1 for different ionic-strength fractions y of NaCl with y = 1/3, 1/2, and 2/3. The data allow the deduction of new osmotic coefficients. The results obtained were correlated by Pitzer’s model and Dinane’s mixing rules ECA I and ECA II for calculations of the water activity in mixed aqueous electrolytes. A new Dinane–Pitzer model is proposed for the calculation of osmotic coefficients in quaternary aqueous mixtures using the newly ternary and quaternary ionic mixing parameters of this studied system. The solute activity coefficients of component in the mixture are also determined for different ionic-strength fractions y of NaCl.  相似文献   

11.
Osmotic coefficients ?, mean activity coefficients γ±, vapor pressure p data, and excess Gibbs free energies GE of aqueous solutions of three ionic liquids 1-propyl-3-methylimidazolium bromide [PMIm]Br, 1-pentyl-3-methylimidazolium bromide [PnMIm]Br, and 1-hexyl-3-methylimidazolium bromide [HMIm]Br were determined by the vapor pressure osmometry method at four temperatures (298.15 K to 328.15 K) in intervals 10 K. From the comparison of osmotic coefficients it follows that aqueous solution of [PMIm]Br shows a more pronounced deviation from Debye–Hückel limiting law (DHLL) and vapor pressure depression more than the other studied ionic liquids which was interpreted in terms of hydrophobic interactions. The Pitzer-ion interaction and MNRTL electrolyte models satisfactorily correlate experimental osmotic coefficient data with good precision. The parameters of the Pitzer-ion interaction model are used to calculate the mean molal activity coefficients and excess Gibbs free energies.  相似文献   

12.
Partition coefficients for a series of dinitrophenylated (DNP) amino acids in biphasic systems composed of hydrophobic ionic liquids and water were experimentally determined. The ionic liquids used were three 1-alkyl-3-methylimidazolium tetrafluoroborates, [Cnmim][BF4], with alkyl chain substituents hexyl, octyl, and decyl. The liquid–liquid phase diagram for the system ([C10mim][BF4] + water) was experimentally determined. DNP amino acids distribute preferentially to the IL-rich phase and ([C10mim][BF4] + water) was found to be the system with the lowest partition coefficients for the solutes studied. The experimental partition coefficients decrease as the size of the alkyl side chain in the ionic liquids increases. The free energy of transfer of a methylene group between phases was calculated through the partition coefficients, which provides a measure of the relative hydrophobicity of the equilibrium phases. It was found that the system ([C10mim][BF4] + water) presents a lower free energy (and thus a lower relative hydrophobicity) than the system ([C8mim][BF4] + water). In order to better understand this result, the micellar behavior of the three ionic liquids was studied. Electrical conductivities of several aqueous solutions of the ionic liquids were measured to determine the critical micelle concentration (CMC) and the degree of micelle ionization, α, of the three ionic liquids. From these two properties it was possible to obtain the free energy of micellization, ΔGmic, for the ionic liquids.  相似文献   

13.
Osmotic coefficients of the binary solutions of two room-temperature ionic liquids (1-butyl-3-methylimidazolium chloride and bromide) in methanol and ethanol have been measured at T = 298.15 K by the isopiestic method. The experimental osmotic coefficient data have been correlated using a forth-order polynomial in terms of (molality)0.5, with both, ion interaction model of Pitzer and electrolyte non-random two liquid (e-NRTL) model of Chen. The values of vapor pressures of above-mentioned solutions have been calculated from the osmotic coefficients. The model parameters fitted to the experimental osmotic coefficients have been used for prediction of the mean ionic activity coefficients of those ionic liquids in methanol and ethanol.  相似文献   

14.
Ternary (liquid + liquid) equilibria for three systems containing ionic liquids {(4-(2-methoxyethyl)-4-methylmorpholinium trifluorotris(perfluoroethyl)phosphate, 1-(2-methoxyethyl)-1-methylpiperidinium trifluorotris(perfluoroethyl)phosphate, 1-(2-methoxyethyl)-1-methylpyrrolidinium trifluorotris(perfluoroethyl)phosphate) + thiophene + heptane} have been determined at T = 298.15 K. All systems showed high solubility of thiophene in the ionic liquid and low solubility of heptane. The solute distribution coefficient and the selectivity were calculated for all systems. High values of selectivity were obtained. The experimental results have been correlated using NRTL model. The influence of ionic liquid structure on phase equilibria is discussed.  相似文献   

15.
Osmotic coefficients of binary mixtures containing several primary and secondary alcohols (1-propanol, 2-propanol, 1-butanol, 2-butanol, and 1-pentanol) and the pyridinium-based ionic liquid 1-ethylpyridinium ethylsulfate were determined at T = 323.15 K using the vapour pressure osmometry technique. From the experimental results, vapour pressure and activity coefficients can be determined. For the correlation of osmotic coefficients, the extended Pitzer model modified by Archer, and the modified NRTL (MNRTL) model were used, obtaining deviations lower than 0.017 and 0.047, respectively. The mean molal activity coefficients and the excess Gibbs free energy for the binary mixtures studied were determined from the parameters obtained with the extended Pitzer model modified by Archer.  相似文献   

16.
Water activity measurements by the isopiestic method have been carried out on the aqueous ternary system of {l-serine + 1-(2-carboxyethyl)-3-methylimidazolium chloride[HOOCEMIM][Cl]} ionic liquid and the aqueous binary system of IL at T = 298.15 K and atmospheric pressure. The data obtained were used to calculate the vapor pressure and osmotic coefficient of solution as a function of concentration. The experimental results for the activity of water were accurately correlated with segment-based local composition models of modified NRTL and UNIQUAC. The fitting quality of the above models has been favorably compared with the NRTL and Wilson models. From these data, the corresponding activity coefficients have been calculated. For the same system, the solubility of the l-serine at various [HOOCEMIM][Cl] ionic liquid concentrations was measured at T = 298.15 K using the gravimetric method. A chemical model was employed to describe the dissociation equilibria of all amino acid species with hydrogen ions in water. Moreover, for l-serine, the chemical model indicated that the formation of cations is insignificant in the [HOOCEMIM][Cl] solution. Also the above local composition models were used to predict the solubility of l-serine in aqueous IL solutions. To provide information regarding (solute + solute) interactions, transfer Gibbs free energies (ΔGtr) of amino acid from water to aqueous IL solutions have been determined.  相似文献   

17.
Measurements of osmotic coefficients of BMimMSO4 (1-butyl-3-methylimidazolium methylsulfate) and MMimMSO4 (1,3-dimethylimidazolium methylsulfate) with ethanol, 1-propanol, and 2-propanol at T = 323.15 K are reported in this work. Vapour pressure and activity values for the binary systems studied are obtained from experimental results. The osmotic coefficients are correlated using the extended Pitzer model modified by Archer and the modified NRTL (MNRTL) model. The standard deviations obtained with both models are lower than 0.013 and 0.060, respectively. The parameters obtained with the extended Pitzer model of Archer are used to calculate the mean molal activity coefficients and the excess Gibbs free energy of the binary mixtures.  相似文献   

18.
(Liquid + liquid) equilibrium (LLE) data were measured experimentally at T = (298.15 or 303.15) K and atmospheric pressure for the (benzene + cyclohexane + dimethyl sulfone (DMSO)) system. The Othmer–Tobias equation was applied to verify the reliability of the data. Based on the data, the selectivity of DMSO was estimated and compared with that of ionic liquids. The highest selectivity coefficient of DMSO can reach beyond 14, which means it is able to compete with some ionic liquids and it would be a good extractant to separate benzene from cyclohexane. At the same time, the NRTL model was used to correlate the data and the results show that the model agrees on the experimental data very well.  相似文献   

19.
20.
Measurements of osmotic coefficients of BmimCl (1-butyl-3-methylimidazolium chloride) and HmimCl (1-hexyl-3-methylimidazolium chloride) with ethanol and EmimEtSO4 (1-ethyl-3-methylimidazolium ethylsulfate) and EmpyEtSO4 (1-ethyl-3-methylpyridinium ethylsulfate) with water at T = (313.15 and 333.15) K are reported in this work. Vapour pressure and activity results of the studied binary systems are obtained from experimental measurements. The results for the osmotic coefficients are correlated using the extended Pitzer model modified by Archer and the modified NRTL (MNRTL) model. The standard deviations obtained with both models are also given. The parameters obtained with the extended Pitzer model of Archer are used to calculate the mean molal activity coefficients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号