首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental data on the surface tension and refractive index of tetradecyltrihexylphosphonium-based ionic liquids with bromide, chloride, decanoate, methanesulfonate, dicyanimide, bis(2,4,4-trimethylpentyl)phosphinate and bis(trifluoromethylsulfonyl)imide anions are reported. The data were obtained for pure and water saturated samples at temperatures from 283 K to 353 K and at atmospheric pressure. The refractive index of the investigated ionic liquids decreases with increasing the water content in the sample. On the other hand, no clearly dependence of the surface tension with the water content up to a weight fraction of 16% was found. The prediction of the refractive index for the studied ionic liquids was also accomplished by a group contribution method and new values for the cation and diverse anions were estimated and proposed. The studied ionic liquids show lower surface tension in comparison with imidazolium-, pyridinium- or pyrrolidinium-based ionic liquids with a similar anion; also they show higher surface entropy than cyclic nitrogen-based fluids which indicates a lower surface organization. The anion dependence of the surface tension and surface entropy for the investigated ionic liquids is weaker than that for short-chain imidazolium-based ionic liquids. Their critical temperatures evaluated from Eötvos and Guggenheim equations are also lower than those of N-heterocyclic ionic fluids.  相似文献   

2.
Here we present redox ionic liquid supercapacitors (RILSCs) which use electrolytes made from ionic liquids modified with an electroactive function to increase the energy density of activated carbon electrodes via faradaic reactions. More specifically, two different ionic liquids were made by modifying either the imidazolium cation or the bis(trifluoromethanesulfonyl)imide anion with ferrocene in order to determine the importance of the electroactive ion's polarity. The functionalization of an ionic liquid with ferrocene led to high concentrations of redox moieties in the electrolyte (2.4 M) and a large maximum operating voltage (2.5 V). An energy density of up to 13.2 Wh per kg (both electrodes) was obtained which represents an 83% increase vs. the unmodified ionic liquid. When the ionic liquid's anion is modified with ferrocene, the self-discharge at the positive electrode is fully suppressed due to the deposition of a film on the electrode. The results presented herein demonstrate that electroactive ionic liquids constitute a promising alternative to conventional solute in solvent electrolytes found in energy storage devices, and are particularly well-suited for redox-active electrolyte supercapacitors.  相似文献   

3.
Experimental air–liquid interfacial tension data and density data are presented for three 1-Cn-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphates (FAP), [CnMIM][(C2F5)3PF3], with n = 2, 4, and 6, measured at atmospheric pressure in the temperature range from 267 K to 360 K using the Krűss K100MK2 tensiometer. The accuracy of the surface tension measurements was checked by employing the Wilhelmy plate and the du Noüy ring methods in parallel. The combined standard uncertainty associated with the Wilhelmy plate method is estimated to be ±0.1 mN · m−1. The density data were obtained using buoyancy method with an estimated standard uncertainty less then ±0.4 kg · m−3 (3 · 10−4ϱ). The chloride anions decrease the density of the tris(pentafluoroethyl)trifluorophosphates of interest up to six times more effectively than they decrease the density of the imidazolium based tetrafluoroborates. A QSPR analysis of the surface tension of imidazolium based ionic liquids with BF4, TFA, DCA, FAP, NTf2, and PF6 anions indicates, that the FAP ionic liquids fit well into the analyzed group of imidazolium based ionic liquids while those having hexafluorophosphate anion show anomalously high deviations of the experimental surface tension from the values predicted by the QSPR model.  相似文献   

4.
Air–liquid interfacial surface tension measurements are reported on four 1-alkyl-3-methylimidazolium ([Cn-mim], n = 2, 4, 6) based ionic liquids at 15 temperatures from (283 to 353) K at atmospheric pressure. To validate the accuracy of the results, the Wilhelmy plate method and the du Noüy ring method were employed in parallel, using the Kr?ss K100MK2 tensiometer. At each temperature from 29 to 44 individual readings were taken. The surface tension average values at particular temperatures are presented with the estimated overall standard uncertainty ranging from (±0.025 to ±0.1) mN · m?1. An empirical surface tension–temperature equation has been developed describing the temperature dependence of each ionic liquid surface tension. Some details of the measurement procedure that have been found to be important in achieving the highest possible accuracy are discussed.  相似文献   

5.
The present study aims at evaluating the capability of phosphate-based salts, whose anions can coexist in water depending on the media pH, to promote aqueous biphasic systems (ABS) formation with 1-butyl-3-methylimidazolium-based ionic liquids, as well as to infer on the influence of the ionic liquid anion in the overall process of liquid–liquid demixing. In this context, novel phase diagrams of ABS composed of several imidazolium-based ionic liquids and three phosphate salts and a mixture of salts (K3PO4, K2HPO4, K2HPO4 + KH2PO4, and KH2PO4) were determined by the cloud point titration method at 298 K and atmospheric pressure. The corresponding tie-line compositions, tie-line lengths, and pH values of the coexisting phases were also determined. The ionic liquids ability to promote ABS is related with the hydrogen-bond basicity of the composing anion – the lower it is the higher the ability of the ionic fluid to undergo liquid–liquid demixing. Moreover, similar patterns on the ionic liquids sequence were observed with the different phosphate salts. The phosphate anion charge plays a determinant role in the formation of ABS. The two-phase formation aptitude (with a similar ionic liquid) decreases in the rank: K3PO4 > K2HPO4 > K2HPO4 + KH2PO4 > KH2PO4. Yet, besides the charge of the phosphate anion, the pH and ionic strength of the aqueous media also influence the phase separation ability.  相似文献   

6.
The effect of temperature on the physical properties of some ionic liquids was investigated. Density, refractive index, surface tension, dynamic and kinematic viscosities of 1-butyl-3-methylimidazolium based ionic liquids with thiocyanate and tetrafluoroborate, and 1-hexyl-3-methylimidazolium with tetrafluoroborate and hexafluorophosphate anions were measured at various temperatures (density from T = (278.15 to 363.15) K, refractive index from (293.15 to 343.15) K, surface tension from (283.15 to 333.15) K, dynamic viscosity from (283.15 to 368.15) K, and kinematic viscosity from (298.15 to 363.15) K). The volumetric properties for the ionic liquids were also calculated from the experimental values of the density at T = 298.15 K. The Vogel–Fulcher–Tammann (VFT) equation was applied to correlate experimental values of dynamic and kinematic viscosities as a function of temperature. As well, the relation between density and refractive index was correlated satisfactorily with several empirical equations such as Lorentz–Lorenz, Dale–Gladstone, Eykman, Oster, Arago–Biot, Newton and Modified–Eykman. Finally, the relation between surface tension and viscosity was investigated and the parachor method was used to predict density, refractive index and surface tension of the ionic liquids.  相似文献   

7.
In this work, we present surface tension experimental measurements for eight binary systems containing water or ethanol and an ionic liquid (IL) of the 1-ethyl-3-methyl imidazolium alkyl sulphate family, being the alkyl chain of the anion: ethyl, butyl, hexyl and octyl. Measurements were performed at the temperature of 25.0 °C and atmospheric pressure. All four ILs are completely miscible with water and ethanol, but for a concentration range of the octyl sulphate IL aqueous system the mixture jellifies, and so it is not possible to measure its surface tension. These measurements allow us to study the influence of the anion size on the surface tension for the pure IL compounds, and the role of the two different solvents in the surface tension behaviour. Thus, we observe that it is completely different when mixed with water or with ethanol, as also happens in other mixtures with different ionic liquids. From the experimental data, we extract surface tension deviations using the most popular definition. The calculated deviations for the ethanol based system are fitted using the Redlich–Kister equation and a novel one previously reported by us. Furthermore, we have also calculated the reduced surface pressure for the aqueous mixtures, which is fitted with good agreement using a theoretical equation obtained from the Bahe–Varela pseudo-lattice model.  相似文献   

8.
This paper reports that new ionic liquids (ILs) have been prepared by directly mixing the chloride of group III and 1-methyl-3-pentylimidazolium chloride (PMIC) with molar ratio 1/1 under dry argon atmosphere. The densities and surface tension of these ILs were determined at temperature range of 273.15 K to 343.15 ± 0.1 K. The properties for the ionic liquids were discussed by interstice model and Glasser’s theory.  相似文献   

9.
A new group of room temperature ionic liquids based on triethylalkylphosphonium cations together with a bis(trifluoromethylsulfonyl)imide anion as a novel electrolyte is presented in this report. It was found that phosphonium ionic liquids showed lower viscosities and higher conductivities than those of the corresponding ammonium ionic liquids. Particularly, phosphonium ionic liquids containing a methoxy group, triethyl(methoxymethyl)phosphonium bis(trifluoromethylsulfonyl)imide and triethyl(2-methoxyethyl)phosphonium bis(trifluoromethylsulfonyl)imide, exhibited quite low viscosities (35 and 44 mPa s at 25 °C, respectively). Linear sweep voltammetry measured in neat phosphonium ionic liquids at a glassy carbon electrode indicated wide potential windows (at least −3.0 to +2.3 V vs. Fc/Fc+). Thermogravimetric analysis suggested that phosphonium ionic liquids were thermally stable up to nearly 400 °C, showing slower gravimetric decreases at high temperature compared to those of the corresponding ammonium ionic liquids.  相似文献   

10.
Ionic liquids (ILs) are used as entrainers in azeotropic systems such as water + ethanol, water + 2-propanol, and water + tetrahydrofuran (THF). Ionic liquids consisting of a cation and an anion has limitless combinations, thereby making experimentation expensive and time taking. For the prediction of the liquid phase nonidealities resulting from molecular interactions, “COnductor-like Screening MOdel for Real Solvents” (COSMO-RS) approach is used in this work for the screening of potential ionic liquids. Initially benchmarking has been done on 12 reported isobaric IL based ternary systems with an absolute average deviation of 4.63% in vapor phase mole fraction and 1.07% in temperature. After successful benchmarking, ternary vapor + liquid equilibria for the azeotropic mixture of (a) ethanol + water, (b) 2-propanol + water, and (c) THF + water with combinations involving 10 cations (imidazolium, pyridinium, quinolium) and 24 anions were predicted. The VLE prediction, which gave the relative volatility, showed that the imidazolium based ionic liquid were the best entrainer for the separation of the three systems at their azeotropic point. ILs with [MMIM] cation in combination with acetate [OAc], chloride [Cl], and bromide [Br] anion gave the highest relative volatility.  相似文献   

11.
In the past few years, ionic liquid-based aqueous biphasic systems have become the subject of considerable interest as a promising technique for the extraction and purification of several macro/biomolecules. Aiming at developing guidelines for more benign and efficient extraction processes, phase diagrams for aqueous biphasic systems composed of ionic liquids and inorganic/organic salts are here reported. Several combinations of ionic liquid families (imidazolium, pyridinium, phosphonium, quaternary ammonium and cholinium) and salts [potassium phosphate buffer (KH2PO4/K2HPO4 at pH 7), potassium citrate buffer (C6H5K3O7/C6H8O7 at pH 5, 6, 7 and 8) and potassium carbonate (K2CO3 at pH ∼13)] were evaluated to highlight the influence of the ionic liquid structure (cation core, anion and alkyl chain length), the pH and the salt nature on the formation of aqueous biphasic systems. The binodal curves and respective tie-lines reported for these systems were experimentally determined at (298 ± 1) K. In general, the ability to promote the aqueous biphasic systems formation increases with the pH and alkyl chain length. While the influence of the cation core and anion nature of the ionic liquids on their ability to form aqueous biphasic systems closely correlates with ionic liquids capacity to be hydrated by water, the effect of the different salts depends of the ionic liquid nature and salt valency.  相似文献   

12.
Binary electrolytes composed of ionic liquids and boric esters were prepared by studying compatibility between various combinations of such systems. The study showed that out of various combinations of ionic liquids/boric esters, only TFSI anion (or FSI anion) based ionic liquids/mesityldimethoxyborane (MDMB) systems were found to be miscible. After equimolar amount of lithium salts was added to ionic liquids, the resulting solution showed high ionic conductivity that was comparable to those for ionic liquids. The lithium transference number (tLi +) of these systems at room temperature was found to be very high. A maximum tLi + of 0.93 was observed for a binary mixture of AMImFSI [1-allyl-3-methylimidazolium bis(fluorosulfonyl)imide]/MDMB. Further, this binary mixture as electrolyte in Li/electrolyte/Si cell showed good reversible lithiation-delithiation with > 2500 mAh/g of delithiation specific capacity.  相似文献   

13.
The surface tension (γ) of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]), 1-butyl-3-methylimidazolium bromide ([Bmim][Br]), (N-methyldiethanolamine(MDEA) + [Bmim][BF4]) and (MDEA + [Bmim][Br]) aqueous solutions were measured by using the BZY-1 surface tension meter. The temperature ranged from (293.2 to 323.2) K. The mass fraction of MDEA ranged from 0.35 to 0.45. A thermodynamic equation was proposed to model the surface tension of (MDEA + ionic liquids) (ILS) aqueous solutions and the calculated results agreed well with the experiments. The effects of temperature, mass fractions of MDEA and ILS on the surface tension were demonstrated on the basis of experiments and calculations.  相似文献   

14.
Surface and bulk properties of 1-hexyl-3-methylimidazolium chloride [C6mim][Cl] as an ionic liquid (IL) have been investigated by surface tension and electrical conductivity techniques at various temperatures. Results reveal that the ionic liquid behaves as surfactant-like and aggregates in aqueous solution. Critical aggregation concentration (cac) values obtained by conductivity and surface tension measurements are in good agreement with values found in the literature. A series of important and useful adsorption parameters including cac, surface excess concentration (Γ), and minimum surface area per molecule (Amin) at the air + water interface were estimated from surface tension in the presence and absence of different electrolytes. Obtained data show that the surface tension as well as the cac of [C6mim][Cl] is reduced by electrolytes. Also, values of surface excess concentration (Γ) show that the IL ions in the presence of electrolyte have much larger affinity to adsorption at the surface and this affinity increased in aqueous electrolyte solution in the order of I? > Br? > Cl? for counter ion of salts that was explained in terms of a larger repulsion of chloride anions from interface to the bromide and iodide anion as well as difference in their excess polarizability.  相似文献   

15.
Activity coefficients at infinite dilution were determined for 24 solutes: n-alkanes, alk-1-enes, alk-1-ynes, cycloalkanes, alkylbenzenes and alcohols in the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate, [OMIM][PF6], by gas–liquid chromatography at three different temperatures T = (313.15, 323.15, and 333.15) K. The partial molar excess enthalpy values at infinite dilution were calculated from the experimental data over the same temperature range. Capacities and selectivities at infinite dilution for the systems hexane/benzene and methanol/benzene were determined from the experimental data and compared to the literature values for other ionic liquids, as well as for industrial molecular solvents. The influence of the cation and anion of the ionic liquid on the activity coefficient is discussed, as well as the usefulness of [OMIM][PF6] in separating organic liquids.  相似文献   

16.
In this paper, experimental densities and dynamic viscosities of 1-ethyl-3-methylimidazolium based ionic liquids (ILs) with the anions acetate and dicyanamide are presented in a wide temperature range (298.15 to 343.15 K) at atmospheric pressure. Surface tension of these ILs was measured at T = 298.15 K. The effect of water and/or ethanol compositions on densities and dynamic viscosities of these ILs are studied in binary and ternary mixtures. A quadratic mixing rule was used to correlate binary and ternary liquid densities. The Eyring–Patel–Teja model, which is recommended for polar and aqueous systems, is used to correlate dynamic viscosity data over the whole range of compositions and temperatures in binary and ternary mixtures. Temperature-dependent interaction parameters are introduced here to account for the changes of viscosities with temperature showing good agreements with experimental data.  相似文献   

17.
This article principally reviews our research related to liquid–liquid and solid–liquid phase behavior of imidazolium- and phosphonium-based ionic liquids, mainly having bistriflamide ([NTf2]) or triflate ([OTf]) anions, with several aliphatic and aromatic solutes (target molecules). The latter include: (i) diols and triols: 1,2-propanediol, 1,3-propanediol and glycerol; (ii) polymer poly(ethylene glycol) (PEG): average molecular mass 200, 400 and 2050 – PEG200 (liquid), PEG400 (liquid) and PEG2050 (solid), respectively; (iii) polar aromatic compounds: nicotine, aniline, phenolic acids (vanillic, ferulic and caffeic acid,), thymol and caffeine and (iv) non-polar aromatic compounds (benzene, toluene, p-xylene). In these studies, the effects of the cation and anion, cation alkyl chain and PEG chain lengths on the observed phase behaviors were scrutinized. Thus, one of the major observations is that the anion – bistriflamide/triflate – selection usually had strong, sometimes really remarkable effects on the solvent abilities of the studied ionic liquids. Namely, in the case of the hydrogen-bonding solutes, the ionic liquids with the triflate anion generally exhibited substantially higher solubility than those having the bistriflamide anion. Nevertheless, with the aromatic compounds the situation was the opposite – in most of the cases it was the bistriflamide anion that favoured solubility. Moreover, our other studies confirmed the ability of PEG to dissolve both polar and non-polar aromatic compounds. Therefore, two general possibilities of application of alternative, environmentally acceptable, solvents of tuneable solvent properties appeared. One is to use homogeneous mixtures of two ionic liquids having [NTf2] and [OTf] anions as mixed solvents. The other, however, envisages the application of homogeneous and heterogeneous (PEG + ionic liquid) solutions as tuneable solvents for aromatic solutes.Such mixed solvents have potential applications in separation of the aforesaid target molecules from their aqueous solutions or in extraction from original matrices. From the fundamental point of view the phase equilibrium studies reviewed herein and the diversity of the pure compounds – ionic liquids and target molecules – represent a good base for the discussion of interactions between the molecules that exist in the studied solutions.  相似文献   

18.
During recent last years, outstanding properties of ionic liquids such as low melting point, large liquid range and negligible volatility have turned them into possible volatile organic solvents replacers to break alcohol-alkane azeotropic mixtures. On this basis, two ionic liquids, butyltrimethylammoniumbis(trifluoromethylsulfonyl)imide, [BTMA][NTf2], and tributylmethylammoniumbis(trifluoromethylsulfonyl)imide, [TBMA][NTf2], were studied through ternary liquid+liquid equilibrium (LLE) of {alkane(1) + alcohol (2) + IL(3)} at T = 298.15 K and atmospheric pressure in order to consider the effect of ionic liquid cation alkyl chain length on the extraction process.The ILs capability as azeotrope breakers was determined by the calculation of parameters such as solute distribution ratio, β, and selectivity, S and this capability was compared with other bis (trifluoromethylsulfonyl)imide based ionic liquids from literature. The consistency of tie-line data was ascertained by applying the Othmer–Tobias and Hand equations. Finally, the experimental LLE were correlated by the Non Random Two Liquid (NRTL) thermodynamic model.  相似文献   

19.
Synthesis of new ionic liquids (ILs) viz. 1-butyl-3-cyanopyridinium bis{(trifluoromethyl)sulfonyl}imide, [BCN3Py][NTf2], 1-hexyl-3-cyanopyridinium bis{(trifluoromethyl)sulfonyl}imide, [HCN3Py][NTf2], 1-hexyl-4-cyanopyridinium bis{(trifluoromethyl)sulfonyl}imide, [HCN4Py][NTf2], and 1-octyl-3-cyanopyridinium bis{(trifluoromethyl)sulfonyl}imide, [OCN3Py][NTf2] were performed. The specific basic characterization of new compounds by NMR spectra, elementary analysis, water content and glass transition temperature as well as melting temperature, enthalpy of fusion and decomposition of compounds TG/DTA determined by the differential scanning calorimetry, DSC is presented. The heat capacity was measured at three temperatures (298.15, 323.15, and 353.15) K and at pressure 0.1 MPa. The effect of temperature on the density and viscosity is reported over the temperature range from (293.15 to 363.15) K and at 0.1 MPa. The density and viscosity correlation for these systems was provided by an empirical polynomial. From the density–temperature dependence, the isothermal expansion coefficient (volume expansivity), α, was calculated. The surface tension of pure ionic liquids was measured at 0.1 MPa at five temperatures (298.15, 308.15, 318.15, 328.15, and 338.15) K. The surface thermodynamic functions such as surface entropy and enthalpy, critical temperatures according to the Eötvös and Guggenheim definition and the total surface energy of the ILs studied were derived from the temperature dependence of the surface tension values. The parachor and speed of sound for pure ionic liquids were described within a range of temperature from (298.15 to 338.15) K. A qualitative analysis on these quantities in terms of molecular interactions is reported.  相似文献   

20.
In this letter we report on the decomposition of the bis (trifluoromethylsulfonyl) amide (TFSA) anion under quite mild electrochemical conditions. The results show clearly that the TFSA anion can easily be decomposed during anodic oxidation of copper in the ionic liquid 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) amide [BMP] TFSA at 70 °C leading to the formation of CuF2. At room temperature, however, no significant decomposition was obtained. Therefore, one has to be very careful in applying ionic liquids based on TFSA anions under anodic conditions at elevated temperature as the TFSA anion might decompose, depending on the anode material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号