首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triboluminescent compounds that generate emission of light in response to mechanical stimulus are promising targets in the development of “smart materials” and damage sensors. Among triboluminescent metal complexes, rare-earth europium and terbium complexes are most widely used, while there is no systematic data on more readily available and inexpensive Cu complexes. We report a new family of photoluminescent Cu–NHC complexes that show bright triboluminescence (TL) in the crystal state visible in ambient indoor light under air. Moreover, when these complexes are blended into amorphous polymer films even at small concentrations, TL is easily observed. Observation of TL in polymer films overcomes the limitation of using crystals and opens up possibilities for the development of mechanoresponsive coatings and materials based on inexpensive metals such as Cu. Our results may also have implications for the understanding of the TL effect''s origin in polymer films.

Triboluminescent compounds that generate emission of light in response to mechanical stimulus are promising targets in the development of “smart materials” and damage sensors.  相似文献   

2.
A metal-templated synthetic route to cyclic (aryl)(ylidic) mesoionic carbenes (CArY-MICs) featuring an endocyclic P-ylide is presented. This approach, which requires metal templates with two cis-positioned open coordination sites, is based on the controlled cyclisation of a P,P′-diisopropyl-substituted 2,2′-diphosphinotolane (1) and leads to chelate complexes coordinated by a phosphine donor and the CArY-MIC carbon atom. The C–P bond formation involved in the former partial cyclisation of 1 proceeds under mild conditions and was shown to be applicable all over the d-block. In the presence of a third fac-positioned open coordination site, the P–C bond formation was found to be reversible, as shown for a series of molybdenum complexes. DFT modelling studies are in line with an interpretation of the target compounds as CArY-MICs.

A metal-templated synthesis of cyclic (aryl)(ylidic)mesoionic carbene complexes (CArY-MICs) is presented. In the case of molybdenum carbonyls, the crucial P–C bond formation, which occurs during CArY-MIC formation, was found to be reversible.  相似文献   

3.
This report examines reactions of a series of Ir complexes supported by the diarylboryl/bis(phosphine) PBP pincer ligand with ethylene: (PBP)IrH4 (1), (PBP)IrH2(CO) (2), and (PBP)Ir(CO)2 (3). The outcomes of these reactions differ from those typical for Ir complexes supported by other pincer ligands and do not give rise to simple ethylene adducts or products of insertion of Ir into the C–H bond of ethylene. Instead, the elements of ethylene are incorporated into the molecules to result in B–C bonds. In the case of 2 and 3, ethylene addition results in the formation of B/Ir bridging ethylidene complexes 5 and 6. For 6, the addition of ethylene (and the analogous addition of 1-hexene) is shown to be partially reversible. Addition of ethylene to 2 and 3 is remarkable because they are saturated at Ir and yet the net outcome is such that ethylene binds without replacing any ligands already present. A mechanistic inquiry suggests that dissociation of CO from 3 or 6 is necessary in order for the addition or loss of ethylene to proceed.

(PBP)Ir pincer complexes containing a boryl-iridium linkage reversibly bind ethylene as an ethylidene bridging B and Ir.  相似文献   

4.
Recent development in catalytic application of transition metal complexes having an M–E bond (E = main group metal or metalloid element), which is stabilized by a multidentate ligand, is summarized. Main group metal and metalloid supporting ligands furnish unusual electronic and steric environments and molecular functions to transition metals, which are not easily available with standard organic supporting ligands such as phosphines and amines. These characteristics often realize remarkable catalytic activity, unique product selectivity, and new molecular transformations. This perspective demonstrates the promising utility of main group metal and metalloid compounds as a new class of supporting ligands for transition metal catalysts in synthetic chemistry.

Recent development in catalytic application of transition metal complexes having an M–E bond (E = main group metal or metalloid element), which is stabilized by a multidentate ligand, is summarized.  相似文献   

5.
Luminescent lanthanide complexes have been actively studied as selective anion receptors for the past two decades. Ln(iii) complexes, particularly of europium(iii) and terbium(iii), offer unique photophysical properties that are very valuable for anion sensing in biological media, including long luminescence lifetimes (milliseconds) that enable time-gating methods to eliminate background autofluorescence from biomolecules, and line-like emission spectra that allow ratiometric measurements. By careful design of the organic ligand, stable Ln(iii) complexes can be devised for rapid and reversible anion binding, providing a luminescence response that is fast and sensitive, offering the high spatial resolution required for biological imaging applications. This review focuses on recent progress in the development of Ln(iii) receptors that exhibit sufficiently high anion selectivity to be utilised in biological or environmental sensing applications. We evaluate the mechanisms of anion binding and sensing, and the strategies employed to tune anion affinity and selectivity, through variations in the structure and geometry of the ligand. We highlight examples of luminescent Ln(iii) receptors that have been utilised to detect and quantify specific anions in biological media (e.g. human serum), monitor enzyme reactions in real-time, and visualise target anions with high sensitivity in living cells.

This minireview highlights advances in anion binding and sensing using luminescent lanthanide(iii) complexes.  相似文献   

6.
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes. The level anti-crossing, or magnetic “clock transition”, associated with this gap has been directly monitored by heat capacity experiments. The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin–spin interactions. In addition, we show that the quantum tunnelling splitting admits a chemical tuning via the modification of the ligand shell that determines the crystal field and the magnetic anisotropy. These properties are crucial to realize model spin qubits that combine the necessary resilience against decoherence, a proper interfacing with other qubits and with the control circuitry and the ability to initialize them by cooling.

We have directly monitored spin level anti-crossings, or “clock transitions”, in Ni(ii) molecular monomers and shown that the quantum tunnelling gap admits a chemical tuning.  相似文献   

7.
Enantioselective transition metal catalysis directed by chiral cations is the amalgamation of chiral cation catalysis and organometallic catalysis. Thus far, three strategies have been revealed: ligand scaffolds incorporated on chiral cations, chiral cations paired with transition metal ‘ate’-type complexes, and ligand scaffolds incorporated on achiral anions. Chiral cation ion-pair catalysis has been successfully applied to alkylation, cycloaddition, dihydroxylation, oxohydroxylation, sulfoxidation, epoxidation and C–H borylation. This development represents an effective approach to promote the cooperation between chiral cations and transition metals, increasing the versatility and capability of both these forms of catalysts. In this review, we present current examples of the three strategies and suggest possible inclusions for the future.

Enantioselective transition metal catalysis directed by chiral cations is the amalgamation of chiral cation catalysis and organometallic catalysis.  相似文献   

8.
In spite of intense, recent research efforts, luminescent transition metal complexes with Earth-abundant metals are still very rare owing to the small ligand field splitting of 3d transition metal complexes and the resulting non-emissive low-energy metal-centered states. Low-energy excited states decay efficiently non-radiatively, so that near-infrared emissive transition metal complexes with 3d transition metals are even more challenging. We report that the heteroleptic pseudo-octahedral d2-vanadium(iii) complex VCl3(ddpd) (ddpd = N,N′-dimethyl-N,N′-dipyridine-2-yl-pyridine-2,6-diamine) shows near-infrared singlet → triplet spin–flip phosphorescence maxima at 1102, 1219 and 1256 nm with a lifetime of 0.5 μs at room temperature. Band splitting, ligand deuteration, excitation energy and temperature effects on the excited state dynamics will be discussed on slow and fast timescales using Raman, static and time-resolved photoluminescence, step-scan FTIR and fs-UV pump-vis probe spectroscopy as well as photolysis experiments in combination with static quantum chemical calculations. These results inform future design strategies for molecular materials of Earth-abundant metal ions exhibiting spin–flip luminescence and photoinduced metal–ligand bond homolysis.

Vanadium is an abundant and cheap metal but near-infrared luminescent vanadium complexes are extremely rare with largely unexplored photophysics and photochemistry. We delineate the photodynamics of VCl3(ddpd) to infer novel design strategies.  相似文献   

9.
Discrete (M3L2)n cages assembled from a tripodal ligand (L) and metal ions (M: Cu(i) or Ag(i)) are embedded in networked coordination hosts formed by partial dissociation of the same discrete cages during the crystallization process. The resulting “eggs-in-an-egg-carton” structures provide unique examples of the co-crystallization of discrete and infinite coordination frameworks.

Discrete coordination cages were connected into the infinite lattices via shape-complementary co-crystallization with networked coordination hosts in the “eggs-in-an-egg-carton” styles.  相似文献   

10.
In contrast to well-established symmetrical pincer complexes, non-symmetrical metal pincers with the loss of C2v symmetry are much less studied. In this work, mesoionic NHTs (NHTs = N-heterocyclic thiones), which can be viewed as the sulfur adducts of mesoionic carbenes, are incorporated into pincer complexes for the first time. Two symmetrical and non-symmetrical phenylene-bridged bis (NHT) compounds 3a / 3b were synthesized as proligands via a “cycloaddition-alkylation-thionation” reaction sequence. In a case to access bis (NHT) compound 3c , N-dealkylation reactions occurred. The carbene NMR signals of NHTs are only partially correlated to the π-accepting abilities of carbenes, which is different from Bertrand's carbene-phosphinidene system. The structural analysis of 3a / 3b indicates that they possess C-S partial double bonds. 3a and 3b served as the precursors to access two aryl anion-linked [SCS/S′] pincer complexes 6a / 6b . An external base proved to be essential for this cyclopalladation process. The catalytic properties of 6a / 6b in the cycloisomerizations of alkynoic acids have been examined. Finally, non-symmetrical complex 6a shows superior catalytic performance in such transformations contrasting to its symmetrical counterpart 6b .  相似文献   

11.
Lanthanide-based luminescence resonance energy transfer (LRET) can be used as a tool to enhance lanthanide emission for time-resolved cellular imaging applications. By shortening lanthanide emission lifetimes whilst providing an alternative radiative pathway to the formally forbidden, weak lanthanide-only emission, the photon flux of such systems is increased. With this aim in mind, we investigated energy transfer in differently spaced donor–acceptor terbium–rhodamine pairs with the LRET “on” (low pH) and LRET “off” (high pH). Results informed the design, preparation and characterisation of a compound containing terbium, a spectrally-matched pH-responsive fluorophore and a receptor-targeting group. By combining these elements, we observed switchable LRET, where the targeting group sensitises lanthanide emission, resulting in an energy transfer to the rhodamine dye with an efficiency of E = 0.53. This strategy can be used to increase lanthanide emission rates for brighter optical probes.

A pH-sensitive luminescence resonance energy transfer (LRET) was explored as a method to increase photon flux in a terbium-rhodamine-receptor targeting group construct. At low pH, long-lived dye emission and shorter terbium lifetimes were observed.  相似文献   

12.
We report here porphodilactol derivatives and their corresponding metal complexes. These systems show promise as “all-in-one” phototheranostics and are predicated on a design strategy that involves controlling the relationship between intersystem crossing (ISC) and photothermal conversion efficiency following photoexcitation. The requisite balance was achieved by tuning the aromaticity of these porphyrinoid derivatives and forming complexes with one of two lanthanide cations, namely Gd3+ and Lu3+. The net result led to a metalloporphodilactol system, Gd-trans-2, with seemingly optimal ISC efficiency, photothermal conversion efficiency and fluorescence properties, as well as good chemical stability. Encapsulation of Gd-trans-2 within mesoporous silica nanoparticles (MSN) allowed its evaluation for tumour diagnosis and therapy. It was found to be effective as an “all-in-one” phototheranostic that allowed for NIR fluorescence/photoacoustic dual-modal imaging while providing an excellent combined PTT/PDT therapeutic efficacy in vitro and in vivo in 4T1-tumour-bearing mice.

We report here porphodilactol derivatives and their corresponding metal complexes as “all-in-one” phototheranostics by controlling the relationship between intersystem crossing (ISC) and photothermal conversion efficiency following photoexcitation.  相似文献   

13.
The electronic properties of aluminyl anions have been reported to be strictly related to those of carbenes, which are well-known to be easily tunable via selected structural modifications imposed on their backbone. Since peculiar reactivity of gold-aluminyl complexes towards carbon dioxide has been reported, leading to insertion of CO2 into the Au–Al bond, in this work the electronic structure and reactivity of Au–Al complexes with different aluminyl scaffolds have been systematically studied and compared to carbene analogues. The analyses reveal that, instead, aluminyls and carbenes display a very different behavior when bound to gold, with the aluminyls forming an electron-sharing and weakly polarized Au–Al bond, which turns out to be poorly modulated by structural modifications of the ligand. The reactivity of gold–aluminyl complexes towards CO2 shows, both qualitatively and quantitatively, similar reaction mechanisms, reflecting the scarce tunability of their electronic structure and bond nature. This work provides further insights and perspectives on the properties of the aluminyl anions and their behavior as coordination ligands.

Aluminyls and carbenes as coordination ligands, although sharing similar electronic properties, reveal fundamental differences in their tunability, bonding to gold and reactivity of their complexes with carbon dioxide.  相似文献   

14.
Heterometallic cooperativity is an emerging strategy to elevate polymerisation catalyst performance. Here, we report the first heterotrimetallic Na/Zn2 and K/Zn2 complexes supported by a ProPhenol ligand, which deliver “best of both” in cyclic ester ring-opening polymerisation, combining the outstanding activity (Na/K) and good control (Zn2) of homometallic analogues. Detailed NMR studies and density-functional theory calculations suggest that the Na/Zn2 and K/Zn2 complexes retain their heterometallic structures in the solution-state. To the best of our knowledge, the K/Zn2 analogue is the most active heterometallic catalyst reported for rac-lactide polymerisation (kobs = 1.7 × 10−2 s−1), giving activities five times faster than the Na/Zn2 complex. These versatile catalysts also display outstanding performance in ε-caprolatone and δ-valerolactone ring-opening polymerisation. These studies provide underpinning methodologies for future heterometallic polymerisation catalyst design, both in cyclic ester polymerisation and other ring-opening (co)polymerisation reactions.

Cooperative heterotrimetallic Na/Zn2 and K/Zn2 complexes combine the excellent activities and control of the homometallic analogues, giving “best of both” in cyclic ester ring-opening polymerisation.  相似文献   

15.
Ru-complexes are widely studied because of their use in biological applications and photoconversion technologies. We reveal novel insights into the chemical bonding of a series of Ru(ii)- and Ru(iii)-complexes by leveraging recent advances in high-energy-resolution tender X-ray spectroscopy and theoretical calculations. We perform Ru 2p4d resonant inelastic X-ray scattering (RIXS) to probe the valence excitations in dilute solvated Ru-complexes. Combining these experiments with a newly developed theoretical approach based on time-dependent density functional theory, we assign the spectral features and quantify the metal–ligand bonding interactions. The valence-to-core RIXS features uniquely identify the metal-centered and charge transfer states and allow extracting the ligand-field splitting for all the complexes. The combined experimental and theoretical approach described here is shown to reliably characterize the ground and excited valence states of Ru complexes, and serve as a basis for future investigations of ruthenium, or other 4d metals active sites, in biological and chemical applications.

Combined experimental and theoretical Ru 2p4d resonant inelastic X-ray scattering study probes the chemical bonding and the valence excited states of solvated Ru complexes.  相似文献   

16.
A unique chain-rupturing transformation that converts an ether functionality into two hydrocarbyl units and carbon monoxide is reported, mediated by iridium(i) complexes supported by aminophenylphosphinite (NCOP) pincer ligands. The decarbonylation, which involves the cleavage of one C–C bond, one C–O bond, and two C–H bonds, along with formation of two new C–H bonds, was serendipitously discovered upon dehydrochlorination of an iridium(iii) complex containing an aza-18-crown-6 ether macrocycle. Intramolecular cleavage of macrocyclic and acyclic ethers was also found in analogous complexes featuring aza-15-crown-5 ether or bis(2-methoxyethyl)amino groups. Intermolecular decarbonylation of cyclic and linear ethers was observed when diethylaminophenylphosphinite iridium(i) dinitrogen or norbornene complexes were employed. Mechanistic studies reveal the nature of key intermediates along a pathway involving initial iridium(i)-mediated double C–H bond activation.

A unique chain-rupturing transformation that converts an ether functionality into two hydrocarbyl units and carbon monoxide is reported.  相似文献   

17.
Nanoparticles of metal–organic frameworks (nanoMOFs) boast superior properties compared to their bulk analogs, yet little is known about how common synthetic parameters dictate particle sizes. Here, we provide experimental evidence for the “seesaw” model of nanoMOF growth. Solution acidity, ligand excess, and reactant concentrations are decoupled and shown to form the key independent determinants of nanoMOF sizes, thereby validating the proposal that nanoMOFs arise from coupled equilibria involving ligand deprotonation and metal–ligand complexation. By achieving the first demonstration of a seesaw relationship between nanoMOF sizes and ligand excess, these results provide further proof of the model, as they required deliberate manipulation of relationships outlined by the model. Exploring the relative impacts of these parameters reveals that ligand excess has the greatest ability to decrease sizes, although low acidity and high concentrations can exhibit similar effects. As a complement to existing models of polymer formation and crystal growth, the seesaw model therefore offers a powerful tool for reliable control over nanoMOF sizes.

Nanoparticles of metal–organic frameworks (nanoMOFs) boast superior properties compared to their bulk analogs, yet little is known about how common synthetic parameters dictate particle sizes.  相似文献   

18.
We report herein the development of a palladium-catalyzed, multicomponent synthesis of indolizines. The reaction proceeds via the carbonylative formation of a high energy, mesoionic pyridine-based 1,3-dipole, which can undergo spontaneous cycloaddition with alkynes. Overall, this provides a route to prepare indolizines in a modular fashion from combinations of commercially available or easily generated reagents: 2-bromopyridines, imines and alkynes.

A palladium catalyzed, multicomponent synthesis of indolizines is described via the carbon monoxide driven generation of reactive, pyridine-based 1,3-dipoles.  相似文献   

19.
A sustainable, new synthesis of oxalamides, by acceptorless dehydrogenative coupling of ethylene glycol with amines, generating H2, homogeneously catalyzed by a ruthenium pincer complex, is presented. The reverse hydrogenation reaction is also accomplished using the same catalyst. A plausible reaction mechanism is proposed based on stoichiometric reactions, NMR studies, X-ray crystallography as well as observation of plausible intermediates.

Ruthenium catalyzed acceptorless dehydrogenative coupling of ethylene glycol and amines to oxalamides is reported. The reverse hydrogenation reaction is also accomplished.  相似文献   

20.
Metals play vital roles in nutrients and medicines and provide chemical functionalities that are not accessible to purely organic compounds. At least 10 metals are essential for human life and about 46 other non-essential metals (including radionuclides) are also used in drug therapies and diagnostic agents. These include platinum drugs (in 50% of cancer chemotherapies), lithium (bipolar disorders), silver (antimicrobials), and bismuth (broad-spectrum antibiotics). While the quest for novel and better drugs is now as urgent as ever, drug discovery and development pipelines established for organic drugs and based on target identification and high-throughput screening of compound libraries are less effective when applied to metallodrugs. Metallodrugs are often prodrugs which undergo activation by ligand substitution or redox reactions, and are multi-targeting, all of which need to be considered when establishing structure–activity relationships. We focus on early-stage in vitro drug discovery, highlighting the challenges of evaluating anticancer, antimicrobial and antiviral metallo-pharmacophores in cultured cells, and identifying their targets. We highlight advances in the application of metal-specific techniques that can assist the preclinical development, including synchrotron X-ray spectro(micro)scopy, luminescence, and mass spectrometry-based methods, combined with proteomic and genomic (metallomic) approaches. A deeper understanding of the behavior of metals and metallodrugs in biological systems is not only key to the design of novel agents with unique mechanisms of action, but also to new understanding of clinically-established drugs.

The vital roles of metals in nutrients and medicines are not accessible to purely organic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号