首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Chemical physics letters》1987,141(3):251-254
Self-diffusion coefficients of 27Al and H2O were determined by the NMR pulsed-field-gradient method in a series of AlCl3 solutions. From these data, bulk water self-diffusion coefficients are derived. It is shown that the relative influence on the bulk water translational motion agrees reasonably with the relative influence on the reorientational motion as reported in previous work. The bulk water self-diffusion is interpreted using a hydrodynamical model.  相似文献   

2.
3.
Brownian dynamics simulations with hydrodynamic interactions are conducted to investigate the self-diffusion of charged tracer particles in a dilute solution of charged polymers, which are modeled by bead-spring chains. The Debye-Hückel approximation is used for the electrostatic interactions. The hydrodynamic interactions are implemented by the Ewald summation of the Rotne-Prager tensor. Our simulations find that the difference in short- and long-time diffusivities is very slight in uncharged short-chain solutions. For charged systems, to the contrary, the difference becomes considerable. The short-time diffusivity is found to increase with increasing chain length, while an opposite behavior is obtained for the long-time diffusivity. The former is attributed to the hydrodynamic screening among beads in a same chain due to the bead connectivity. The latter is explained by the memory effect arising from the electrostatic repulsion and chain length. The incorporation of hydrodynamic interactions improves the agreement between the simulation prediction and the experimental result.  相似文献   

4.
5.
《Colloids and Surfaces》1987,22(1):77-80
The solution chemistry of fatty acids was reassessed. Transmittance measurements confirmed the existence of a colloidal precipitate in accordance with the constructed thermodynamic diagram. The electrokinetic potential of the precipitate and its dependence on pH was examined and an i.e.p. was found around pH 3. It results then that positively charged species exist below pH 3 in the broad range of fatty acid aqueous solution concentrations.  相似文献   

6.
7.
The extent and locus of solubilization of guest and self-assembling surfactant host molecules in aqueous solutions are influenced by a variety of hydrophobic and hydrophilic interactions, as well as by more specific interactions between the various species present. By using a combination of two-dimensional heteronuclear 13C[1H] NMR correlation experiments with pulsed-gradient NMR diffusion and proton cross-relaxation measurements, the locations and distributions of porphyrin guest molecules have been established unambiguously with respect to the hydrophobic and hydrophilic moieties of a triblock copolymer species in solution. The interactions of tetra(4-sulfonatophenyl)porphyrin with the poly(propylene oxide) (PPO) and the poly(ethylene oxide) (PEO) segments of amphiphilic PEO-PPO-PEO triblock copolymer species have been measured as functions of solution conditions, including temperature and pH. The porphyrin/PEO-PPO-PEO interactions are established to be selective and adjustable according to the different temperature-dependent hydrophilicities or hydrophobicities of the PEO and PPO triblock copolymer components. Furthermore, such interactions influence the self-assembly properties of the block-copolymer amphiphiles in solution by stabilizing molecular porphyrin/PEO-PPO-PEO complexes well above the critical micellization temperature of the triblock copolymer species under otherwise identical conditions.  相似文献   

8.
Using a surface force balance, we have measured the normal and shear forces between mica surfaces across aqueous caesium salt solutions (CsNO(3) and CsCl) up to 100 mM concentrations. In contrast to all other alkali metal ions at these concentrations, we find no evidence of hydration repulsion between the mica surfaces on close approach: the surfaces appear to be largely neutralized by condensation of the Cs ions onto the charged lattice sites, and are attracted on approach into adhesive contact. The contact separation at adhesion indicates that the condensed Cs ions protrude by 0.3 +/- 0.2 nm from each surface, an observation supported both by the relatively weak adhesion energies between the surfaces, and the relatively weak frictional yield stress when they are made to slide past each other. These observations show directly that the hydration shells about the Cs(+) ions are removed as the ions condense into the charged surface lattice. This effect is attributed to the low energies-resulting from their large ionic radius-required for dehydration of these ions.  相似文献   

9.
Microemulsion samples of a polyoxyethylene trisiloxane surfactant, water, and 1-decanol are investigated using pulsed field gradient NMR and small-angle neutron scattering (SANS) to determine the solution structure. The surfactant/decanol weight ratio has been kept constant at values of 10:1, 8:1, and 6:1 under variation of water content. The temperature was 32 degrees C for the measurement series at the weight ratio of 10:1 to avoid phase separation at high water content. Also, aqueous surfactant solution samples have been investigated as a function of composition and temperature. Water-rich samples consist of micelles that are close to spherical at very low surfactant concentration and grow into anisometric, that is, oblate formed aggregates, at higher surfactant (or surfactant and decanol) concentration. The aggregates grow with increasing temperature, most probably due to dehydration of the hydrophilic groups. In a concentration range around 50 wt % water, the systems form bicontinuous structures. SANS data are used to estimate surfactant film properties using a model developed for interpretation of neutron scattering data from related systems.  相似文献   

10.
The Nernst-Planck equation and fine-pore membrane model are applied to describe the ultra- and nanofiltration of electrolyte solutions through a inhomogeneous membrane containing one charged layer. Concentration and electric potential distributions, as well as dependences of electrolyte rejection coefficient (selectivity) and streaming potential on system parameters are determined. Asymmetry effect is revealed with respect to the rejection coefficient and streaming potential at different orientations of the selective charged layer relative to the direction of the filtration flow. The cases of 1: 1 and 1: 2 electrolytes are investigated in detail. Theoretical calculations demonstrate that the rejection coefficient of a bi-layer membrane rises in the following series of binary electrolytes: 1: 2 < 1: 1 < 2: 1, when the first layer is positively charged, and in the opposite series of these electrolytes, when the first layer is negatively charged.  相似文献   

11.
The formation of spherical micelles in aqueous solutions of poly(N-methyl-2-vinyl pyridinium iodide)-block-poly(ethylene oxide), P2MVP-b-PEO and poly(acrylic acid)-block-poly(vinyl alcohol), PAA-b-PVOH has been investigated with light scattering-titrations, dynamic and static light scattering, and 1H 2D Nuclear Overhauser Effect Spectroscopy. Complex coacervate core micelles, also called PIC micelles, block ionomer complexes, and interpolyelectrolyte complexes, are formed in thermodynamic equilibrium under charge neutral conditions (pH 8, 1 mM NaNO3, = 25 °C) through electrostatic interaction between the core-forming P2MVP and PAA blocks. 2D 1H NOESY NMR experiments show no cross-correlations between PEO and PVOH blocks, indicating their segregation in the micellar corona. Self-consistent field calculations support the conclusion that these C3Ms are likely to resemble a ‘patched micelle’; that is, micelles featuring a ‘spheres-on-sphere’ morphology.  相似文献   

12.
The various nuclear techniques which have been used to study oxygen self-diffusion in oxides are discussed. Results are given for measurements using resonance capture in the18O(p, α)15N and18O(p, γ)19F reactions and the different techniques are compared.  相似文献   

13.
14.
The authors analyze the long-time self-diffusion of charge-stabilized colloidal macroions in nondilute suspensions using a mode-coupling scheme developed for multicomponent suspensions of interacting Brownian spheres. In this scheme, all ionic species, including counterions and electrolyte ions, are treated on an equal footing as charged hard spheres undergoing overdamped Brownian motion. Hydrodynamic interactions between all ions are accounted for on the far-field level. We show that the influence on the colloidal long-time self-diffusion coefficient arising from the relaxation of the microionic atmosphere surrounding the colloids, the so-called electrolyte friction effect, is usually insignificant in comparison with the friction contributions arising from direct and hydrodynamic interactions between the colloidal particles. This finding is true even for small colloid concentrations unless the mobility difference between colloidal particles and microions is not large. Furthermore, we observe an interesting nonmonotonic density dependence of the colloidal long-time self-diffusion coefficient in suspensions with low amount of added salt. We show that this unusual density dependence is due to colloid-colloid hydrodynamic interactions.  相似文献   

15.
The ion-exchange isotherms of Ni2+/H+ and Co2+/H+ have been determined with a solution of 0.1 ionic strength for both forward and backward reactions at 25°C by a batch technique. The thermodynamic equilibrium constants for the exchange process have been calculated using the Gains and Thomas equation. The preference Ni2+>Co2+ has been shown. The ion exchange selectivity for exchange of Ni2+ and Co2+ ions with hydrogen ions on zirconium titanate has been investigated as a function of [HCl] from aqueous and 25% of methanol and/or ethanol solutions. The values of the thermodynamic functions for the studied systems have been reported. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The formation of selective surface patch binding induced complex coacervates between polyions, chitosan (cationic polyelectrolyte), and alkali-processed gelatin (polyampholyte), both carrying similar net charge, was investigated for two volumetric mixing ratios: r = [chitosan]/[gelatin] = 1:5 and 1:10. Formation of soluble intermolecular complexes between gelatin and chitosan molecules was observed in a narrow range of pH, though these biopolymers had the same kind of net charge, which was evidenced from electrophoretic measurement. This clearly established the role played by selective surface patch binding driven interactions. The temperature sweep measurements conducted on these coacervate samples through rheology and differential scanning calorimetry (DSC) studies yielded two characteristic melting temperatures located at approximately 68 +/- 3 degrees C and 82 +/- 3 degrees C. In the flow mode, the shear viscosity (eta) of the coacervate samples was found to scale with (power-law model) applied shear rate (gamma*) as eta(gamma*) approximately (gamma*)(-k); this yielded k = 0.76 +/- 0.2 (1 s(-1) < gamma* < 100 s(-1)), indicating non-Newtonian behavior. The static structure factor (I(q)) deduced from small angle neutron scattering (SANS) data in the low q (q is the scattering wavevector) (0.018 A(-1) < q < 0.072 A(-1)) region was fitted to the Debye-Bueche regime, I(q) approximately 1/(1 + zeta(2)q(2))2 that yielded a size of zeta approximately 215 +/- 20 A (for r = 1:10) and zeta approximately 260 +/- 20 A (for r = 1:5) samples, implying change in the size of inhomogeneities present with mixing ratio. In the intermediate q region, called the Ornstein-Zernike regime, I(q) approximately 1/(1 + xi(2)q(2)) gave a correlation length of xi approximately 10.0 +/- 2.0 A independent of the mixing ratio. The results taken together imply the existence of a weakly interconnected and heterogeneous network structure inside the coacervate phase separated by domains of polymer-poor regions.  相似文献   

17.
18.
The concentration dependence of self-diffusion of ions in solutions at large concentrations has remained an interesting yet unsolved problem. Here we develop a self-consistent microscopic approach based on the ideas of mode-coupling theory. It allows us to calculate both contributions which influence the friction of a moving ion: the ion atmosphere relaxation and hydrodynamic interactions. The resulting theory provides an excellent agreement with known experimental results over a wide concentration range. Interestingly, the mode-coupling self-consistent calculation of friction reveal a nonlinear coupling between the hydrodynamic interactions and the ion atmosphere relaxation which enhances ion diffusion by reducing friction, particularly at intermediate ion concentrations. This rather striking result has its origin in the similar time scales of the relaxation of the ion atmosphere relaxation and the hydrodynamic term, which are essentially given by the Debye relaxation time. The results are also in agreement with computer simulations, with and without hydrodynamic interactions.  相似文献   

19.
NMR self-diffusion coefficient measurements have been used to study the properties of polyethylene glycol (23) lauryl ether (Brij-35) with cetyltrimethylammonium bromide (CTAB) in the mixed aqueous solutions with different mole fractions of CTAB. By fitting the self-diffusion coefficients to the two-state exchange model, the critical micelle concentrations of the two solutes in the mixed solutions (cmc*1 and cmc*2) were obtained. The critical mixed micelle concentrations (cmc*) were then evaluated by the sum of cmc*1 and cmc*2, which are in good agreement with the results measured by the surface tension method. The cmc* values are lower than those of the ideal case of mixing, which indicates that the behavior of the CTAB/Brij-35 system is nonideal. Moderate interactions between CTAB and Brij-35 in their mixtures can be deduced from the interaction parameters (betaM) based on the cmc* obtained by the NMR self-diffusion method. The compositions (x1) of the mixed micelles at different total surfactant concentrations were also evaluated. By using these results, a possible mechanism of mixed micellar formation and a picture of the formation of nonsimultaneous CTAB/Brij-35 binary mixed micelle were proposed. In contrast to the case of CTAB/TX-100 system, Brij-35 molecules have a tendency to form micelles first at any mole fraction of CTAB. The mixed micellar self-diffusion coefficients (Dm) increase slightly at lower CTAB molar ratios, and then speed up with increasing CTAB mole fraction.  相似文献   

20.
Pulsed-field gradient 1H NMR is employed to investigate the self-diffusion of amyloid Aβ-peptide in an aqueous buffer solution (pH 7.44) with a protein concentration of 50 μmol at 20°C. The self-diffusion coefficient of the peptide in a freshly prepared solution corresponds to its monomeric form. The storage of the solution at 24°C causes part of the peptide molecules to form amyloid aggregates as soon as over 48 h. However, the 1H NMR echo signal typical of aggregated molecules is not observed because of their dense packing in the aggregates and a large mass of the latter. A freezing-fusion of the solution after the aggregation does not cause changes in the self-diffusion coefficients of the peptide. After a peptide solution free of amyloid aggregates is subjected to a freezing-fusion cycle, part of the peptide molecules also remains in the monomeric form in the solution, while another part forms amyloid aggregates, with a portion of the aggregated peptide molecules retaining a high rotational mobility with virtually absolute absence of a translational mobility. The results obtained are interpreted in terms of the formation of “porous aggregates” of amyloid fibrils, with “pores” having sizes comparable with those of peptide molecules, though, being larger than water molecules. Peptide molecules, which do not form fibrils, are captured in the pores. Temperature regime is shown to be of importance for the aggregation of amyloid peptides. In particular, freezing, which is traditionally considered to be a method for the prevention from or temporary interruption of aggregation, may itself lead to the formation of amorphous amyloid aggregates, which remain preserved in solutions after their unfreezing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号