首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, (liquid + liquid) equilibrium (LLE) data for the ternary systems (cyclohexane, or cyclooctane, or methylcyclohexane + ethylbenzene + 1-ethyl-3-methylimidazolium ethylsulfate) have been determined experimentally at T = 298.15 K and atmospheric pressure. The solubility curves and the tie-line compositions of the conjugate phases were obtained by means of density. The degree of consistency of the tie-lines was tested using the Othmer–Tobias equation, and the Non-Random Two-Liquid (NRTL) and the Universal Quasi-Chemical (UNIQUAC) models were used to correlate the phase equilibrium in the systems. Selectivity and solute distribution ratio were evaluated for the immiscible region.  相似文献   

2.
This paper focuses on the study of the solubility behaviour of 1-hexyl-3-methylimidazolium tetracyanoborate [HMIM][TCB] and 1-butyl-3-methylimidazolium tetracyanoborate [BMIM][TCB] in combination with methylcyclohexane and toluene as representatives for non-aromatic and aromatic components. Binary and ternary (liquid + liquid) equilibrium data were collected at three different temperatures and at atmospheric pressure (0.1 MPa). The experimental data were well-correlated with the NRTL and UNIQUAC thermodynamic models; however, the UNIQUAC model gave better predictions than the NRTL, with a root mean square error below 0.97%. The non-aromatic/aromatic selectivities of the ionic liquids make them suitable solvents to be used in extractive distillation processes.  相似文献   

3.
The group method of data handling (GMDH) method was used to estimate (vapour + liquid) equilibrium (VLE) for the binary systems of (tert-butanol + 2-ethy1-1-hexanol) and (n-butanol + 2-ethy1-1-hexanol). Using this method, a new model was proposed, which is suitable for predicting the VLE data. In this publication, the proposed model was ‘trained’ before requested predictions. The data set was divided into two parts: 70% were used as data for ‘training’ (either 10 or 12), and 30% were used as a test set, which were randomly extracted from the database (either 14 or 16). After the training on the input–output process, the predicted values were compared with those of experimental values in order to evaluate the performance of the GMDH neural network method. The model values showed a very good regression with the experimental results.  相似文献   

4.
In this paper, we report experimental densities, dynamic viscosities, and refractive indices and their derived properties of the ternary system (1-butyl-3-methylimidazolium methylsulphate + ethanol + water) at T = 298.15 K and of its binary systems 1-butyl-3-methylimidazolium methylsulphate with ethanol and with water at several temperatures T = (298.15, 313.15, 328.15) K. These physical properties have been measured over the whole composition range and at 0.1 MPa. Excess molar volumes, viscosity deviations, and excess free energy of activation for the binary systems at the abovementioned temperatures, were calculated and fitted to the Redlich–Kister equation to determine the fitting parameters and the root-mean-square deviations and for the ternary systems were calculated and fitted to Cibulka, Singh et al., and Nagata and Sakura equations. The ternary excess properties were predicted from binary contributions using geometrical solution models. Refractive indices were measured from T = 298.15 K over the whole composition range for the binary and ternary systems. The results were used to calculate deviations in the refractive index.  相似文献   

5.
(Liquid + liquid) equilibria of 14 binary systems composed of n-hexane, n-heptane, benzene, toluene, o-xylene, m-xylene, or p-xylene and 1-ethyl-3-methylimidazolium ethylsulfate, [emim]EtSO4, or 1-butyl-3-methylimidazolium methylsulfate, [bmim]MeSO4, ionic liquids have been done in the temperature range from (293.2 to 333.2) K. The solubility of aliphatic is less than those of the aromatic hydrocarbons. In particular, the solubility of hydrocarbons in both ionic liquids increases with the temperature in the order n-heptane < n-hexane < m-xylene < p-xylene < o-xylene < toluene < benzene. Considering the high solubility of aromatics and the low solubility of aliphatic hydrocarbons as well as totally immiscibility of the ionic liquids in all hydrocarbons, these new green solvents may be used as potentials extracting solvents for the separation of aromatic and aliphatic hydrocarbons.  相似文献   

6.
Experimental isothermal (vapour + liquid) equilibrium (VLE) data are reported for the binary mixture containing 1-butyl-3-methylimidazolium iodide ([bmim]I) + 1-butanol at three temperatures: (353.15, 363.15, and 373.15) K, in the range of 0 to 0.22 liquid mole fraction of [bmim]I. Additionally, refractive index measurements have been performed at three temperatures: (293.15, 298.15 and 308.15) K in the whole composition range. Densities, excess molar volumes, surface tensions and surface tension deviations of the binary mixture were predicted by Lorenz–Lorentz (nD-ρ) mixing rule. Dielectric permittivities and their deviations were evaluated by known equations. (Vapour + liquid) equilibrium data were correlated with Wilson thermodynamic model while refractive index data with the 3-parameters Redlich–Kister equation by means of maximum likelihood method. For the VLE data, the real vapour phase behaviour by virial equation of state was considered. The studied mixture presents S-shaped abatement from the ideality. Refractive index deviations, surface tension deviations and dielectric permittivity deviations are positive, while excess molar volumes are negative at all temperatures and on whole composition range. The VLE data may be used in separation processes design, and the thermophysical properties as key parameters in specific applications.  相似文献   

7.
The compound oryzanol available in the rice bran (oriza sativa) is well known for its antioxidant activity. Phase equilibrium data involving oryzanol in compressed fluids, hardly found in the literature, are important to provide the basis for the extraction and fractionation processes. In this sense, the aim of this work is to report phase equilibrium measurements for the system (γ-oryzanol + chloroform) in compressed propane. Phase equilibrium experiments were performed using the static synthetic method (cloud points transition data) in a high-pressure variable-volume view cell in the temperature range of 303 K to 353 K, pressures up to 17 MPa, for oryzanol overall mass fractions of 2 wt%, 5 wt% and 10 wt% in (propane + chloroform) mixtures. A complex phase behaviour comprising vapour–liquid, liquid–liquid, vapour–liquid–liquid, solid–liquid, solid–liquid–liquid, solid–liquid–liquid–vapour transitions were visually observed for the system studied.  相似文献   

8.
(Vapour + liquid) equilibrium (VLE) data are important for designing and modelling of process equipment. Since it is not always possible to carry out experiments at all possible temperatures and pressures, generally thermodynamic models based on equations of state are used for estimation of VLE. In this paper, an alternate tool, i.e. the artificial neural network technique has been applied for estimation of VLE for the binary systems viz. (tert-butanol + 2-ethyl-1-hexanol) and (n-butanol + 2-ethyl-1-hexanol). The temperature range over which these models are valid is (353.2 to 458.2) K at atmospheric pressure. The average absolute deviation for the temperature output was in range 2% to 3.3%. The results were then compared with experimental data.  相似文献   

9.
10.
Densities and viscosities were measured for pure ionic liquid [C6mim][Br] (1-hexyl-3-methylimidazolium bromide) and the binary system (water + [C6mim][Br]) at 0.1 MPa and in the (293.15 to 333.15) K range. The excess molar volume and viscosity deviation were calculated and correlated by Redlich–Kister polynomial expansions. The fitting parameters and the standard deviations were determined.  相似文献   

11.
The (liquid + liquid) equilibrium (LLE) data for two systems containing heptane, toluene, and 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide ([mpim][Tf2N]) or 1-allyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([amim][Tf2N]) ionic liquids (ILs) were determined at T = 313.2 K and atmospheric pressure. The effect of a double bond in an alkyl side chain in the imidazolium cation was evaluated in terms of selectivity and extractive capacity. The results show a decrease of the amount of toluene and heptane dissolved in the IL with the allyl group. Thus, the distribution ratios of toluene and heptane of [mpim][Tf2N] IL are higher than those of [amim][Tf2N] IL. On the other hand, the separation factor of the [amim][Tf2N] IL increases comparing to [mpim][Tf2N] IL. The NRTL model was used to correlate satisfactorily the experimental LLE data for the two studied ternary systems.  相似文献   

12.
(Liquid + liquid) equilibrium (LLE) data for (water + propionic acid + 2-ethyl-1-hexanol) were determined at atmospheric pressure over the temperature range of (298.15 to 308.15) K. A type-1 LLE phase diagram was obtained for this ternary system. The LLE data were correlated fairly well with UNIQUAC model, indicating the reliability of the UNIQUAC equation for this ternary system. The average root mean square deviation between the observed and calculated mole fractions was 1.57%. Distribution coefficients and separation factors were measured to evaluate the extracting capability of the solvent.  相似文献   

13.
The purpose of this work is modeling of the quaternary system of mixed NaCl + KCl electrolyte in mixed CH3OH + H2O solvent, with different alcohol mass fractions by using particularly, the Pitzer (P) and Pitzer–Esteso (PE) equations and based on potentiometric measurement technique. The experimental data are obtained by different molal salt ratio r (r = mNaCl/mKCl = 100, 150, 200 and 250) in mixed solvent with different alcohol mass fractions x (x = 0.10, 0.20, 0.30, 0.40, and 0.50) in water. A galvanic cell is employed for collecting the potentiometric data by combining a Na+ glass membrane and Ag/AgCl electrodes and using different series of electrolyte solutions, at defined constant ionic strengths, with the molality ranging from 0.0005 up to 3.5 mol · kg−1, at T = 298.15 ± 0.05 K of experiments. Comparison of the models shows that the modified Pitzer equation by Esteso (PE) present a better fit of the experimental data.  相似文献   

14.
(Liquid + liquid) equilibrium (LLE) data for (water + acetic acid + 2-ethyl-1-hexanol) were measured at atmospheric pressure in the temperature range of (298.2 to 313.2) K. The UNIFAC model was used to predict the observed LLE data with a root-mean-square deviation value of 2.03%. A high degree of consistency of experimental data was obtained using the Othmer–Tobias correlation. The solubility of water in 2-ethyl-1-hexanol was measured at different temperatures.  相似文献   

15.
(Liquid + liquid) equilibrium (LLE) data for the (water + butyric acid + dodecanol) ternary system have been determined experimentally at T = (298.2, 308.2 and 318.2) K. Complete phase diagrams were obtained by determining binodal curves and tie lines. The reliability of the experimental tie lines was confirmed by using the Othmer–Tobias correlation. The UNIFAC method was used to predict the phase equilibrium in the ternary system using the interaction parameters determined from experimental data of CH3, CH2, COOH, OH and H2O functional groups. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

16.
Excess enthalpy (HE) for the binary system of (methanol + 2,4,4-trimethyl-1-pentene) (TMP-1) is reported at T = 298.15 K and 101 kPa. (Liquid + liquid) equilibrium (LLE) for the same system is measured at atmospheric pressure (101 kPa). LLE for ternary system of (water + methanol + 2,4,4-trimethyl-1-pentene) is measured at T = (283 and 298) K.The parameters of Non-Random Two-Liquid (NRTL) model were regressed for the system of (methanol + TMP-1) using HE and LLE from this work combined with isobaric (101 kPa) and isothermal (T = 331 K) VLE data from literature. The NRTL parameters for the binary system of (water + TMP-1) were fitted to a binary LLE data set from literature. NRTL parameters for the binary system of (water + methanol) were taken from ASPEN PLUS. The LLE for the ternary system was modeled by the three binary NRTL interaction parameters systems. The binary and ternary models were compared against the measured data.  相似文献   

17.
Densities and viscosities were determined for binary mixtures of 2,2,2-trifluoroethanol (TFE) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) or 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([bmim][NTf2]) over the entire range of composition. The experimental measurements were carried out at temperatures ranging from 278.15 K to 333.15 K, at atmospheric pressure. The densities and viscosities of the pure ionic liquids and their mixtures with TFE were described successfully by an empirical third-order polynomial and by the Vogel–Fulcher–Tammann equation, respectively. In addition, excess molar volumes and viscosity deviations were determined from densities and viscosities of mixtures, respectively, and fitted by using the Redlich–Kister equation.  相似文献   

18.
The liquid–liquid equilibrium (LLE) of the ternary system comprising heptane, thiophene and the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C2mim][NTf2]) was determined at 25 °C and atmospheric pressure, for preliminary evaluation of the potential of this ionic liquid as solvent for the desulfurisation of transportation fuels. Classical parameters such as solute distribution ratio and selectivity were calculated from the LLE data and subsequently analysed. The LLE data were also correlated by means of the ‘Non-Random Two-Liquid’ (NRTL) equation. Besides the LLE, another critical property for the design of extraction processes, namely the interfacial tension, was determined in parallel, throughout the immiscibility domain of the ternary system. For the first time, the LLE and the interfacial tension of a ternary system involving an ionic liquid are jointly reported.  相似文献   

19.
Phase diagram and (liquid + liquid) equilibrium (LLE) data for the (NaNO3 + polyethylene glycol 4000 (PEG 4000) + H2O) system have been determined experimentally at T = (288.15 and 308.15) K. The effects of temperature on the binodal curves and tie-lines have been studied and it was found that an increasing in temperature caused the expansion of two-phase region. The Chen-NRTL, modified Wilson and UNIQUAC models were used to correlate the experimental tie-line data. The results show that the quality of fitting is better with the UNIQUAC model.  相似文献   

20.
《Fluid Phase Equilibria》2005,233(2):123-128
Isobaric vapor–liquid equilibria for the binary mixtures of tert-butanol (TBA) + 2-ethyl-1-hexanol and n-butanol (NBA) + 2-ethyl-1-hexanol were experimentally investigated at atmospheric pressure in the temperature range of 353.2–458.2 K. The raw experimental data were correlated using the UNIQUAC and NRTL models and used to estimate the interaction parameters between each pair of components in the systems. The experimental activity coefficients were obtained using the gas chromatographic method and compared with the calculated data obtained from these equilibrium models. The results show that UNIQUAC model gives better correlation than NRTL for these binary systems. The liquid–liquid extraction of TBA from aqueous solution using 2-ethyl-1-hexanol was demonstrated by simulation and the variation of separation factor of TBA at several temperatures was reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号