首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The values of the density were measured for binary liquid mixtures of benzene and toluene with dichloromethane over entire range of concentration using a vibrating-tube densimeter at T = (288.15, 293.15, 298.15, and 303.15) K and atmospheric pressure. The excess molar volumes, calculated from the density results, are positive for the systems of dichloromethane with benzene over the whole concentration range and present an approximate sigmoid curve for the dichloromethane with toluene. The VmE values have been fitted to the Redlich–Kister polynomial equation, and other volumetric properties such as the partial molar volumes, Vi¯, the apparent molar volume, V?i, and the partial molar excess volumes at infinite dilution, (ViE¯), were calculated over the whole composition range. The Prigogine–Flory–Patterson (PFP) theory and its applicability in predicting VmE at T = 298.15 K are tested. Good agreement was found for the mixtures dichloromethane with benzene. For the mixtures dichloromethane with toluene, which shows an approximate S-shaped VmE behaviour, the correlation fails.  相似文献   

5.
6.
7.
8.
In this work, density and viscosity have been determined for (polyethylene glycol dimethyl ether 250 + 1,2-propanediol, or 1,2-butanediol, or 1,2-pentanediol, or 1,2-hexanediol) binary systems over the whole concentration range at temperatures of (293.15, 303.15, 313.15, 323.15) K and atmospheric pressure. Experimental data of mixtures were used to calculate the excess molar volumes VE, and viscosity deviations Δη. These results were fitted by the Redlich–Kister polynomial relation to obtain the coefficients and standard deviations.  相似文献   

9.
10.
11.
12.
13.
14.
15.
Densities (ρ) and speeds of sound (u) have been measured for (l-phenylalanine + 0.01 mol · kg−1 aqueous β-cyclodextrin) and (l-histidine + 0.01 mol · kg−1 aqueous β-cyclodextrin) systems at T = (293.15, 298.15, 303.15 and 308.15) K using the density and sound velocity Meter DSA 5000 M. The ρ and u values have been utilized to evaluate values of the partial molar volume (ϕv), transfer partial molar volume (Δtrϕv), partial molar isentropic compressibility (ϕk), and transfer partial molar isentropic compressibility (Δtrϕk) of the systems studied. The experimentally measured and calculated parameters have been interpreted in terms of host-guest and ion-hydrophilic interactions operative in the systems.  相似文献   

16.
Experimental densities, electrical conductivities and dynamic viscosities of the pure 1-butyl-1-methylpyrrolydinium dicyanamide ionic liquid, [bmpyrr][DCA], and its binary liquid mixtures with γ-butyrolactone (GBL) were measured at temperatures from (273.15 to 323.15) K and at pressure of 0.1 MPa over the whole composition range. From the experimental density data the related excess molar volumes were calculated and fitted using Redlich–Kister’s polynomial equation. Obtained values are negative in the whole range of ionic liquid mole fraction and at all temperatures. Other volumetric properties, such as isobaric thermal expansion coefficients, partial molar volumes and partial molar volumes at infinite dilution were also calculated, in order to obtain information about the interactions between GBL and the selected ionic liquid. Negative values of these properties for both components indicate stronger interactions between GBL and IL compared to the pure components and better packing due to the differences in size and shape of the studied molecules. From the viscosity results, the Angell strength parameter was calculated and found to be 5.47 indicating that [bmpyrr][DCA] is a “fragile” liquid. All the results are compared with those obtained for binary mixtures of 1-butyl-1-methylpyrrolydinium bis(trifluoromethylsulfonyl)imide, [bmpyrr][NTf2], with GBL.  相似文献   

17.
18.
Measurements of the critical parameters for {xNH3 + (1 ? x)H2O} with x = (0.9098, 0.7757, 0.6808) were carried out by using a metal-bellows variable volumometer with an optical cell. The expanded uncertainties (k = 2) in temperature, pressure, density, and composition measurements have been estimated to be less than 3.2 mK, 3.2 kPa, 0.3 kg · m?3, and 8.8 · 10?4, respectively. In each mole fraction, the critical temperature Tc was first determined on the basis of the intensity of the critical opalescence. The critical pressure pc and critical density ρc were then determined as the point at which the meniscus disappears on the isotherm at T = Tc. The expanded uncertainties (k = 2) in the present critical parameters have also been estimated. Comparisons of the present values with the literature data as well as the calculated values afforded using the equation of state are also presented.  相似文献   

19.
(Liquid + liquid) phase equilibria (LLE) of binary mixtures containing hyperbranched polymer Boltorn® H2004 and n-alkanes (n-hexane, n-heptane, n-octane, and n-decane) were studied over the temperature range from about (260 up to 360) K. The polymer is partially miscible with n-alkanes and the solubility decreases with an increase of the chain length of the solvent. Corresponding LLE phase diagrams including spinodal and binodal (liquid + liquid) coexistence curves were calculated in terms of the statistical mechanics – based on the lattice-cluster theory, based only on the upper critical solution temperature, and the polymer chain architecture. The results show semi-qualitative agreement of predicted and experimental equilibrium compositions and temperatures. Boltorn® H2004 reveals complete miscibility in the liquid phase with alcohols (C1–C8), aromatic hydrocarbons (benzene, toluene, and thiophene), and ethers (methyl tetra-butyl ether, ethyl tetra-butyl ether, and tetrahydrofurane).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号