共查询到20条相似文献,搜索用时 0 毫秒
1.
Sophie Monge Vincent Darcos David M. Haddleton 《Journal of polymer science. Part A, Polymer chemistry》2004,42(24):6299-6308
The use of DMSO as solvent for transition metal mediated living radical polymerization was investigated using copper (I) bromide/N‐(n‐propyl)‐2‐pyridyl‐methanimine catalyst system and ethyl‐2‐bromoisobutyrate as initiator. The best conditions for polymerization in DMSO of different methacrylates (MMA, BMA, DMAEMA, HEMA) were determined. In all cases, the measured number‐average molar mass of the product increased linearly with monomer conversion in agreement with the theoretical Mn with low polydispersity products (1.16 < PDI < 1.4) achieved. Solvent was found to play a crucial role in the process. The effect of the polar solvent has been investigated and it was shown that DMSO could coordinate copper (II), increasing the activation process, or copper (I), changing the nature of the copper catalyst by competitive complexation of ligand and DMSO. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6299–6308, 2004 相似文献
2.
3.
Jie Miao Weiwei He Lifen Zhang Yi Wang Zhenping Cheng Xiulin Zhu 《Journal of polymer science. Part A, Polymer chemistry》2012,50(11):2194-2200
In this work, living radical polymerizations of a water‐soluble monomer poly(ethylene glycol) monomethyl ether methacylate (PEGMA) in bulk with low‐toxic iron catalyst system, including iron chloride hexahydrate and triphenylphosphine, were carried out successfully. Effect of reaction temperature and catalyst concentration on the polymerization of PEGMA was investigated. The polymerization kinetics showed the features of “living”/controlled radical polymerization. For example, Mn,GPC values of the resultant polymers increased linearly with monomer conversion. A faster polymerization of PEGMA could be obtained in the presence of a reducing agent Fe(0) wire or ascorbic acid. In the case of Fe(0) wire as the reducing agent, a monomer conversion of 80% was obtained in 80 min of reaction time at 90 °C, yielding a water‐soluble poly(PEGMA) with Mn = 65,500 g mol?1 and Mw/Mn = 1.39. The features of “living”/controlled radical polymerization of PEGMA were verified by analysis of chain‐end and chain‐extension experiments. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
4.
Shijie Ding Youqing Shen Maciej Radosz 《Journal of polymer science. Part A, Polymer chemistry》2004,42(14):3553-3562
The properties of a ligand, including molecular structure and substituents, strongly affect the catalyst activity and control of the polymerization in atom transfer radical polymerization (ATRP). A new tetradentate ligand, N,N′‐bis(pyridin‐2‐ylmethyl‐3‐hexoxo‐3‐oxopropyl)ethane‐1,2‐diamine (BPED) was synthesized and examined as the ligand of copper halide for ATRP of styrene (St), methyl acrylate (MA), and methyl methacrylate (MMA), and compared with other analogous linear tetrdendate ligands. The BPED ligand was found to significantly promote the activation reaction: the CuBr/BPED complex reacted with the initiators so fast that a large amount of Cu(II)Br2/BPED was produced and thus the polymerizations were slow for all the monomers. The reaction of CuCl/BPED with the initiator was also fast, but by reducing the catalyst concentration or adding CuCl2, the activation reaction could be slowed to establish the equilibrium of ATRP for a well‐controlled living polymerization of MA. CuCl/BPED was found very active for the polymerization of MA. For example, 10 mol% of the catalyst relatively to the initiator was sufficient to mediate a living polymerization of MA. The CuCl/BPED, however, could not catalyze a living polymerization of MMA because the resulting CuCl2/BPED could not deactivate the growing radicals. The effects of the ligand structures on the catalysis of ATRP are also discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3553–3562, 2004 相似文献
5.
Albert Badri Michael R. Whittaker Per B. Zetterlund 《Journal of polymer science. Part A, Polymer chemistry》2012,50(15):2981-2992
Graphene nanosheets possess a range of extraordinary physical and electrical properties with enormous potential for applications in microelectronics, photonic devices, and nanocomposite materials. However, single graphene platelets tend to undergo agglomeration due to strong π–π and Van der Waals interactions, which significantly compromises the final material properties. One of the strategies to overcome this problem, and to increase graphene compatibility with a receiving polymer host matrix, is to modify graphene (or graphene oxide (GO)) with polymer brushes. The research to date can be grouped into approaches involving grafting‐from and grafting‐to techniques, and further into approaches relying on covalent or noncovalent attachment of polymer chains to the suitably modified graphene/GO. The present Highlight article describes research efforts to date in this area, focusing on the use of controlled/living radical polymerization techniques. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
6.
Synthesis of poly(2‐ethylhexyl acrylate)/clay nanocomposite by in situ living radical polymerization
Dhruba J. Haloi Nikhil K. Singha 《Journal of polymer science. Part A, Polymer chemistry》2011,49(7):1564-1571
This investigation reports the preparation of tailor‐made poly(2‐ethylhexyl acrylate) (PEHA) prepared via in situ living radical polymerization in the presence of layered silicates and characterization of this polymer/clay nanocomposite. Being a low Tg (?65 °C) material, PEHA has very good film formation property for which it is used in paints, adhesives, and coating applications. 2‐Ethylhexyl acrylate was polymerized at 90 °C using CuBr and Cu(0) as catalyst in combination with N,N,N′,N″,N″‐pentamethyl diethylenetriamine (PMDETA) as ligand. A tremendous enhancement in reaction rate and polymerization data was achieved when acetone was added as additive to increase the efficiency of the catalyst system. PEHA/clay nanocomposite was prepared at 90 °C using CuBr as catalyst in combination with PMDETA as ligand. Different types of clay with same loading were also used to study the effect on reaction rate. The molecular weight (Mn) and polydispersity index of the prepared nanocomposites were characterized by size exclusion chromatography. The active end group of the polymer chain was analyzed by 1H NMR analysis and by chain extension experiment. Polymer/clay interaction was studied by Fourier Transform Infrared spectrometry and wide‐angle X‐ray diffraction analyses. Distribution of clay in the polymer matrix was studied by the transmission electron microscopy. Thermogravimetric analysis showed that thermal stability of PEHA/clay nanocomposite increases on addition of nanoclay. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
7.
Devon A. Shipp Xiang Yu 《Journal of polymer science. Part A, Polymer chemistry》2004,42(21):5548-5558
Kinetic studies of the atom transfer radical polymerization (ATRP) of styrene are reported, with the particular aim of determining radical‐radical termination rate coefficients (<kt>). The reactions are analyzed using the persistent radical effect (PRE) model. Using this model, average radical‐radical termination rate coefficients are evaluated. Under appropriate ATRP catalyst concentrations, <kt> values of approximately 2 × 108 L mol?1 s?1 at 110 °C in 50 vol % anisole were determined. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5548–5558, 2004 相似文献
8.
Laurence Moine Herv Deleuze Marie Degueil Bernard Maillard 《Journal of polymer science. Part A, Polymer chemistry》2004,42(5):1216-1226
High‐capacity microcellular monoliths were prepared by a two‐step process, including the synthesis of a bromoester‐functionalized scaffold by the copolymerization of a highly concentrated emulsion and an in situ surface polymerization of methyl methacrylate with atom transfer radical polymerization. The influence of various parameters, such as the feed ratio, the concentration of immobilized bromoester groups, and the presence of a spacer group on the poly(methyl methacrylate) loading, was studied. Monoliths with capacities of up to 7 mmol g?1 were obtained. Thermogravimetric analyses, scanning electron microscopy experiments, and mercury intrusion porosimetry measurements were used for the characterization of the final materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1216–1226, 2004 相似文献
9.
Hanying Zhao S. Dayana Argoti Brendan P. Farrell Devon A. Shipp 《Journal of polymer science. Part A, Polymer chemistry》2004,42(4):916-924
Polymer–silicate nanocomposites were synthesized with atom transfer radical polymerization (ATRP). An ATRP initiator, consisting of a quaternary ammonium salt moiety and a 2‐bromo‐2‐methyl propionate moiety, was intercalated into the interlayer spacings of the layered silicate. Subsequent ATRP of styrene, methyl methacrylate, or n‐butyl acrylate with Cu(I)X/N,N‐bis(2‐pyridiylmethyl) octadecylamine, Cu(I)X/N,N,N′,N′,N″‐pentamethyldiethylenetriamine, or Cu(I)X/1,1,4,7,10,10‐hexamethyltriethylenetetramine (X = Br or Cl) catalysts with the initiator‐modified silicate afforded homopolymers with predictable molecular weights and low polydispersities, both characteristics of living radical polymerization. The polystyrene nanocomposites contained both intercalated and exfoliated silicate structures, whereas the poly(methyl methacrylate) nanocomposites were significantly exfoliated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 916–924, 2004 相似文献
10.
The synthesis of poly(methyl acrylate)-block-poly(gamma-benzyl-L-glutamate) (PMA-b-PBLG) diblock copolymers, using atom-transfer radical polymerization (ATRP) of methyl acrylate and living polymerization of gamma-benzyl-L-glutamate-N-carboxyanhydride (Glu-NCA) is described. Amido-amidate nickelacycle end groups were incorporated onto amino-terminated poly(methyl acrylates), and the resulting complexes were successfully used as macroinitiators for the growth of polypeptide segments. This method allows the controlled preparation of polypeptide-block-poly(methyl acrylate) diblock architectures with control over polypeptide chain length and without the formation of homopolypeptide contaminants. 相似文献
11.
Yan Shi Zhifeng Fu Bingyi Li Wantai Yang 《Journal of polymer science. Part A, Polymer chemistry》2006,44(8):2468-2475
A stable nitroxyl radical functionalized with an initiating group for atom transfer radical polymerization (ATRP), 4‐(2‐bromo‐2‐methylpropionyloxy)‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy (Br‐TEMPO), was synthesized by the reaction of 4‐hydroxyl‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy with 2‐bromo‐2‐methylpropionyl bromide. Stable free radical polymerization of styrene was then carried out using a conventional thermal initiator, dibenzoyl peroxide, along with Br‐TEMPO. The obtained polystyrene had an active bromine atom for ATRP at the ω‐end of the chain and was used as the macroinitiator for ATRP of methyl acrylate and ethyl acrylate to prepare block copolymers. The molecular weights of the resulting block copolymers at different monomer conversions shifted to higher molecular weights and increased with monomer conversion. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2468–2475, 2006 相似文献
12.
Delphine Chan‐Seng Michael K. Georges 《Journal of polymer science. Part A, Polymer chemistry》2006,44(13):4027-4038
Living radical polymerizations of styrene were performed under emulsion atom transfer radical polymerization conditions with latexes prepared by a nanoprecipitation technique recently developed for the stable free‐radical polymerization process. Latexes were prepared by the precipitation of a solution of low‐molecular‐weight polystyrene in acetone into a solution of a surfactant in water. The resulting particles were swollen with styrene and then heated. The effects of various surfactants and hydrophobic ligands, the reaction temperature, and the ligand/copper(I) bromide ratio were studied. The best results were obtained with the nonionic surfactant Brij 98 in combination with the hydrophobic ligand N,N‐bis(2‐pyridylmethyl)octadecylamine and a ligand/copper(I) bromide ratio of 1.5 at a reaction temperature of 85–90 °C. Under these conditions, latexes with good colloidal stability with average particle diameters of 200 nm were obtained. The molecular weight distributions of the polystyrenes were narrow, although the experimental molecular weights were slightly larger than the theoretical ones because not all the macroinitiator appeared to reinitiate. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4027–4038, 2006 相似文献
13.
Sung Chul Hong Shijun Jia Mircea Teodorescu Tomasz Kowalewski Krzysztof Matyjaszewski Amy C. Gottfried Maurice Brookhart 《Journal of polymer science. Part A, Polymer chemistry》2002,40(16):2736-2749
Poly(n‐butyl acrylate)‐graft‐branched polyethylene was successfully prepared by the combination of two living polymerization techniques. First, a branched polyethylene macromonomer with a methacrylate‐functionalized end group was prepared by Pd‐mediated living olefin polymerization. The macromonomer was then copolymerized with n‐butyl acrylate by atom transfer radical polymerization. Gel permeation chromatography traces of the graft copolymers showed narrow molecular weight distributions indicative of a controlled reaction. At low macromonomer concentrations corresponding to low viscosities, the reactivity ratios of the macromonomer to n‐butyl acrylate were similar to those for methyl methacrylate to n‐butyl acrylate. However, the increased viscosity of the reaction solution resulting from increased macromonomer concentrations caused a lowering of the apparent reactivity ratio of the macromonomer to n‐butyl acrylate, indicating an incompatibility between nonpolar polyethylene segments and a polar poly(n‐butyl acrylate) backbone. The incompatibility was more pronounced in the solid state, exhibiting cylindrical nanoscale morphology as a result of microphase separation, as observed by atomic force microscopy. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2736–2749, 2002 相似文献
14.
The living radical polymerization of styrene in bulk was successfully performed with a tetraethylthiuram disulfide/copper bromide/2,2′‐bipyridine (bpy) initiating system. The initiator Et2NCS2Br and the catalyst cuprous bromide (CuBr) were produced from the reactants in the system through in situ atom transfer radical polymerization (ATRP). A plot of natural logarithm of the ratio of original monomer concentration to monomer concentration at present, ln([M]0/[M]) versus time gave a straight line, indicating that the kinetics was first‐order. The number‐average molecular weight from gel permeation chromatography (GPC) of obtained polystyrenes did not agree well with the calculated number‐average molecular weight but did correspond to a 0.5 initiator efficiency. The polydispersity index (i.e., the weight‐average molecular weight divided by the number‐average molecular weight) of obtained polymers was as low as 1.30. The resulting polystyrene with α‐diethyldithiocarbamate and ω‐Br end groups could initiate methyl methacrylate polymerization in the presence of CuBr/bpy or cuprous chloride/bpy complex catalyst through a conventional ATRP process. The block polymer was characterized with GPC, 1H NMR, and differential scanning calorimetry. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4001–4008, 2001 相似文献
15.
In situ ATRPs of MMA, St in the presence of TD catalyzed by FeCl3/PPh3 and CuBr2/bpy have been studied, respectively. The results showed that the initiator Et2NCS2X (X = Cl or Br) and catalyst FeCl2 or CuBr were formed in situ from the initiating components and the polymerization exhibited living radical polymerization characteristics. In the case of St polymerization with TD/CuBr/bpy initiating system, an inverse ATRP was observed. 相似文献
16.
Joseph Jagur-Grodzinski 《Journal of polymer science. Part A, Polymer chemistry》2002,40(13):2116-2133
The application of living anionic polymerization techniques for the functionalization of polymers and block copolymers is reviewed. The attachment of functional groups to polymeric chains of predetermined lengths and narrow molecular weight distributions is described. Carboxyls, hydroxyls, amines, halogens, double bonds, and many other functional groups can be placed at one or two ends in the center or evenly spaced along polymeric chains. Subsequent transformations of the functional groups further contribute to the versatility of such treatments. General methods based on the use, as terminators, of substituted haloalkanes, as well as the addition of living polymers or their initiators to diphenylethylenes, substituted with appropriate functional groups or molecules, are discussed. Another approach, based on the living polymerization of monomers with protected functional groups, is also discussed. It has been used for the preparation of polymers and copolymers with evenly spaced functional groups. The combination of living anionic polymerization techniques with controlled radical and cationic polymerizations is also described. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2116–2133, 2002 相似文献
17.
Kenneth P. J. Williams Stewart F. Parker Patrick J. Hendra Andrew J. Turner 《Mikrochimica acta》1988,95(1-6):231-234
The use of a bench top FTIR spectrometer for near infrared Fourier transform Raman spectroscopy is demonstrated. The use of near infrared excitation results in fluorescence free Raman spectra allowing previously difficult samples to be measured. 相似文献
18.
Suresh K. Jewrajka Broja M. Mandal 《Journal of polymer science. Part A, Polymer chemistry》2004,42(10):2483-2494
An improved atom transfer radical polymerization (ATRP) of acrylamide was achieved in a glycerol/water (1:1 v/v) medium with 2‐halopropionamide initiators, CuX (X = Cl or Br) as catalysts, pentamethyldiethylenetriamine (PMDETA) as a ligand, and CuX2 (≥20 mol % CuX) and excess alkali halide (ca. 1 mol/dm3) as additives. The first‐order kinetic plots for the disappearance of the monomer at 130 °C were linear; this was a significant improvement over the results obtained earlier with the bipyridine ligand. However, even under such improved situations, about 7 mol % of the polymer chains were estimated to be formed dead. The polydispersity index was approximately 1.5. At a lower temperature (ca. 90 °C), a lower polydispersity index (1.24) was obtained for the bromide‐based initiating system. Chain‐extension experiments proved the living nature of the polymers. The presence of both extra halide ions and the monomer was necessary to take the CuX–PMDETA complex into solution. It was suggested that the soluble Cu(I) complex was formed with one PMDETA molecule acting as a monodentate ligand and with two halide ions and one acrylamide molecule occupying the other three coordination sites. Some support for the involvement of all three ligands (X?, PMDETA, and acrylamide) in the complex formation was obtained from ultraviolet–visible spectroscopy studies. The better ATRP with the PMDETA ligand was attributed to the better stability and lesser hydrolysis of the 1:1 Cu+2/PMDETA complex with respect the corresponding bipyridine complex. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2483–2494, 2004 相似文献
19.
Cyrille Boyer Per B. Zetterlund Michael R. Whittaker 《Journal of polymer science. Part A, Polymer chemistry》2014,52(15):2083-2098
Copper(0) mediated radical polymerization is an efficient and versatile polymerization technique which allows the control of acrylates and methacrylates with an unprecedented maintenance of end group fidelity (~100%) during the polymerization. In this highlight, we summarize recent works using Cu(0)‐mediated radical polymerization for the synthesis of multiblock copolymers via an iterative approach. This approach has been successfully implemented for the synthesis of decablock copolymers, constituted of blocks with a degree of polymerization ranging from 3–4 to 100 units as well as for the preparation of multiblock star polymers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2083–2098 相似文献
20.
Two vibrational spectrometry-based methodologies were developed for Metamitron determination in pesticide formulations. Fourier transform-middle infrared (FT-MIR) procedure was based on the extraction of Metamitron by CHCl3 and latter determination by peak area measurement between 1556 and 1533 cm−1, corrected with a two points baseline established from 1572 to 1514 cm−1. Fourier transform-near infrared (FT-NIR) determination was made after the extraction of Metamitron in acetonitrile and measuring the peak area between 6434 and 6394 cm−1 corrected using a two points baseline defined between 6555 and 6228 cm−1. Repeatability, as relative standard deviation, of 5 independent measurements at mg g−1 concentration level, of 0.16% and 0.07% for MIR and NIR and a limit of detection of 0.03 and 0.004 mg g−1 were obtained for MIR and NIR, respectively.NIR determination provides a sample frequency of 120 h−1, higher than that found by MIR and liquid chromatographic methods (60 and 15 h−1, respectively). On the other hand, the NIR method reduces the solvent consumption and waste generation, to only 1 ml acetonitrile per sample as compared with 3.4 ml chloroform required for the MIR determination and 60 ml acetonitrile used in the chromatographic reference procedure. So, vibrational procedures can be considered serious alternatives to long and time consuming chromatographic methods usually recommended for quality control of commercially available pesticide formulations. 相似文献