首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the ionic liquids 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [EMim][NTf2], 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [BMim][NTf2], 1-butyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide, [BMpy][NTf2], 1-butyl-3-methylpyridinium trifluoromethanesulfonate, [BMpy][TfO], have been investigated for their use as solvents in extraction processes for the ethanol removal from its azeotropic mixture with hexane. Therefore, the experimental determination of the liquid + liquid equilibrium for the ternary systems {hexane (1) + ethanol (2) + [EMim][NTf2] (3)}, {hexane (1) + ethanol (2) + [BMim][NTf2] (3)}, {hexane (1) + ethanol (2) + [BMpy][NTf2] (3)} and {hexane (1) + ethanol (2) + [BMpy][TfO] (3)} was carried out at T = 298.15 K and atmospheric pressure. Classical parameters such as selectivity and solute distribution ratio, derived from the tie-line data, were calculated and afterwards, the structural influence of the ionic liquids on the extraction process was analyzed. Finally, the experimental LLE data were correlated by means of the NRTL and UNIQUAC models.  相似文献   

2.
The volumetric properties of seven {water + ionic liquid} binary mixtures have been studied as a function of temperature from (293 to 343) K. The phase behaviour of the systems was first investigated using a nephelometric method and excess molar volumes were calculated from densities measured using an Anton Paar densimeter and fitted using a Redlich–Kister type equation. Two ionic liquids fully miscible with water (1-butyl-3-methylimidazolium tetrafluoroborate ([C1C4Im][BF4]) and 1-ethyl-3-methylimidazolium ethylsulfate ([C1C2Im][EtSO4])) and five ionic liquids only partially miscible with water (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C1C2Im][NTf2]), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C1C4Im][NTf2]), 1-butyl-3-methylimidazolium hexafluorophosphate ([C1C4Im][PF6]), 1-butyl-3-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C1C4Pyrro][NTf2]), and butyltrimethylammonium bis(trifluoromethylsulfonyl)imide ([N4111][NTf2])) were chosen. Small excess volumes (less than 0.5 cm3 · mol?1 at 298 K) are obtained compared with the molar volumes of the pure components (less than 0.3% of the molar volume of the pure ionic liquid). For all the considered systems, except for {[C1C2Im][EtSO4] + water}, positive excess molar volumes were calculated. Finally, an increase of the non-ideality character is observed for all the systems as temperature increases.  相似文献   

3.
Heat capacities in a range of temperatures of (5 to 370) K, enthalpies and temperatures of phase transitions for 1-ethyl-3-methylimidazolium bis(triflamide) ([C2mim][NTf2]) and 1-octyl-3-methylimidazolium bis(triflamide) ([C8mim][NTf2]) have been determined by adiabatic calorimetry. [C2mim][NTf2] has been found to form four crystalline phases with different fusion temperatures. Formation of the phases can be controlled by the temperature of annealing during crystallization. [C8mim][NTf2] forms three sequences of crystalline modifications, each including two polymorphs. Based on results of the measurements, thermodynamic functions for the compounds under study have been calculated.A heat-capacity anomaly near T = 230 K reported earlier for [C4mim][NTf2] and [C6mim][NTf2] have been found in some crystalline modifications of both the studied compounds. The position of the anomaly depends on the temperature of annealing of the crystals.  相似文献   

4.
The solubility of carbon dioxide in a series of 1-(2-hydroxyethyl)-3-methylimidazolium ([hemim]+) based ionic liquids (ILs) with different anions, viz. hexafluorophosphate ([PF6]?), trifluoromethanesulfonate ([OTf]?), and bis-(trifluoromethyl)sulfonylimide ([Tf2N]?) at temperatures ranging from 303.15 K to 353.15 K and pressures up to 1.3 MPa were determined. The solubility data were correlated using the Krichevsky–Kasarnovsky equation and Henry’s law constants were obtained at different temperatures. Using the solubility data, the partial molar thermodynamic functions of solution such as Gibbs free energy, enthalpy, and entropy were calculated. Comparison showed that the solubility of CO2 in the ILs studied follows the same behaviour as the corresponding conventional 1-ethyl-3-methylimidazolium ([emim]+) based ILs with the same anions, i.e. [hemim][NTf2] > [hemim][OTf] > [hemim][PF6] > [hemim][BF4].  相似文献   

5.
(Liquid + liquid) equilibrium data for the ionic liquids 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [EMim][NTf2], 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [PMim][NTf2], 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [BMim][NTf2], and 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [HMim][NTf2], mixed with ethanol and heptane were studied at T = 298.15 K and atmospheric pressure. The ability of these ionic liquids as solvents for the extraction of ethanol from heptane was evaluated in terms of selectivity and solute distribution ratio. Moreover, density and refractive index values over the miscible region for the ternary mixtures were also measured at T = 313.15 K. Finally, the experimental data were correlated with the Non Random Two Liquids (NRTL) and UNIversal QUAsi Chemical (UNIQUAC) thermodynamic models, and an exhaustive comparison with available literature data of the studied systems was carried out.  相似文献   

6.
In this paper, the separation of toluene from aliphatic hydrocarbons (heptane, or octane, or nonane) was analyzed by solvent extraction with 1-ethyl-3-methylpyridinium ethylsulfate ionic liquid, [EMpy][ESO4]. Liquid?liquid equilibrium (LLE) data for the ternary systems {heptane (1) + toluene (2) + [EMpy][ESO4] (3)}, {octane (1) + toluene (2) + [EMpy][ESO4] (3)}, and {nonane (1) + toluene (2) + [EMpy][ESO4] (3)} were obtained by measurements at T = 298.15 K and atmospheric pressure. The selectivity, % removal of aromatic, and solute distribution ratio, obtained from experimental equilibrium results, were used to determine the ability of [EMpy][ESO4] as a solvent. The degree of consistency of the experimental LLE values was ascertained using the Othmer–Tobias and Hand equations. The experimental results for the ternary systems were correlated with the NRTL model. Finally, the results obtained were compared with other ionic liquids and other solvents.  相似文献   

7.
Densities and viscosities were determined for binary mixtures of 2,2,2-trifluoroethanol (TFE) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) or 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([bmim][NTf2]) over the entire range of composition. The experimental measurements were carried out at temperatures ranging from 278.15 K to 333.15 K, at atmospheric pressure. The densities and viscosities of the pure ionic liquids and their mixtures with TFE were described successfully by an empirical third-order polynomial and by the Vogel–Fulcher–Tammann equation, respectively. In addition, excess molar volumes and viscosity deviations were determined from densities and viscosities of mixtures, respectively, and fitted by using the Redlich–Kister equation.  相似文献   

8.
Densities and viscosities were measured for pure ionic liquid [C6mim][Br] (1-hexyl-3-methylimidazolium bromide) and the binary system (water + [C6mim][Br]) at 0.1 MPa and in the (293.15 to 333.15) K range. The excess molar volume and viscosity deviation were calculated and correlated by Redlich–Kister polynomial expansions. The fitting parameters and the standard deviations were determined.  相似文献   

9.
In this paper, physical properties of a high purity sample of the ionic liquid 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [PMim][NTf2], and its binary mixtures with methanol, ethanol, 1-propanol, and 2-propanol were measured at atmospheric pressure. The temperature dependence of density, refractive index and speed of sound (293.15 to 343.15) K and dynamic viscosity (298.15 to 343.15) K were studied at atmospheric pressure by conventional techniques for the pure ionic liquid. For its mixtures with alcohols, density, speed of sound, and refractive index were measured at T = 298.15 K over the whole composition range. The thermal expansion coefficient of the [PMim][NTf2] was calculated from the experimental results using an empirical equation, and values of the excess molar volume, excess refractive index, and excess molar isentropic compressibility for the binary systems at the above mentioned temperature, were calculated and fitted to the Redlich–Kister equation. The heat capacity of the pure ionic liquid at T = 298.15 K was determined using DSC.  相似文献   

10.
Density, electrical conductivity and viscosity of binary liquid mixtures of γ-butyrolactone, (GBL) with 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide, [pmim][NTf2], were measured at different temperatures from (293.15 to 323.15) K and at atmospheric pressure (p = 0.1 MPa) over the whole composition range. Excess molar volumes have been calculated from the experimental densities and were fitted with Redlich–Kister’s polynomial equation. Other volumetric properties have been also calculated in order to obtain information about interactions between GBL and selected ionic liquid. All the results are compared with those obtained for binary mixtures of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [bmim][NTf2], with GBL. From the viscosity measurements, the Angell strength parameter was calculated for pure ionic liquid indicating that [pmim][NTf2] is a “fragile” liquid. Electrical conductivity results were discussed in the scope of Bahe–Varela theoretical model.  相似文献   

11.
The ternary (liquid + liquid) equilibrium (LLE) data for mixtures of dodecane (C12H26) and ethanol with ionic liquids 1,3-dimethylimidazolium methylsulfate [Mmim][MeSO4], 1-ethyl-3-methylimidazolium methylsulfate, [Emim][MeSO4] and 1-butyl-3-methylimidazolium methylsulfate, [Bmim][MeSO4], were studied at T = 298.15 K and 0.101 MPa. The selectivity and solute distribution coefficient ratios determined from the data were used to examine the possibility of using these ionic liquids for extraction of ethanol from dodecane. The temperature dependency was investigated by measuring the LLE data for {dodecane + ethanol + [Mmim][MeSO4]} at T = 313.15 K and 0.101 MPa. The Othmer–Tobias and Hand equations were used to test the consistency of the tie-line data. The tie-line data were correlated with the Non-Random Two Liquid (NRTL) equation which provided a good model and representation for the experimental results.  相似文献   

12.
The ionic liquid 1-ethyl-3-methylpyridinium ethylsulfate, [EMpy][ESO4], was studied for the separation of benzene from aliphatic hydrocarbons (octane or nonane) by solvent extraction through the determination of the (liquid + liquid) equilibrium (LLE) of the ternary systems: {octane (1) + benzene (2) + [EMpy][ESO4] (3)} and {nonane (1) + benzene (2) + [EMpy][ESO4] (3)} at T = (283.15 and 298.15) K and atmospheric pressure. Binodal curves were determined using the “cloud point” method, and tie-line compositions were obtained by density measurements. The values of selectivity and distribution coefficient, derived from the tie-line data, were used to decide if this ionic liquid can be used as potential solvent for the separation of benzene from aliphatic hydrocarbons using liquid extraction. These results were analyzed and compared to those previously reported for the systems {hexane + benzene + [EMpy][ESO4]} and {heptane + benzene + [EMpy][ESO4]}. The experimental results show that this ionic liquid is suitable for the extraction of benzene from mixtures containing octane and nonane. The consistency of tie-line data was ascertained by applying the Othmer–Tobias and Hand equations. The experimental results for the ternary systems were well correlated with the NRTL model. No literature data were found for the mixtures discussed in this paper.  相似文献   

13.
14.
(Solid + liquid) equilibria (SLE) and (liquid + liquid) equilibria (LLE) for the binary systems: {ionic liquid (IL) N-butyl-4-methylpyridinium tosylate (p-toluenesulfonate) [BM4Py][TOS], or N-butyl-3-methylpyridinium tosylate [BM3Py][TOS], or N-hexyl-3-methylpyridinium tosylate [HM3Py][TOS], or N-butyl-4-methylpyridinium bis{(trifluoromethyl)sulfonyl}imide [BM4Py][NTf2], or 1,4-dimethylpyridinium tosylate [M1,4Py][TOS], or 2,4,6-collidine tosylate [M2,4,6Py][TOS], or 1-ethyl-3-methylimidazolium thiocyanate [EMIM][SCN], or 1-butyl-3-methylimidazolium thiocyanate [BMIM][SCN], or 1-hexyl-3-methylimidazolium thiocyanate [HMIM][SCN], or triethylsulphonium bis(trifluoromethylsulfonyl)imide [Et3S][NTf2] + thiophene} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (270 to 390) K. In the case of systems (pyridinium IL, or sulphonium IL + thiophene) the mutual immiscibility with an upper critical solution temperature (UCST) was detected at the very narrow and low mole fraction of the IL. For the binary systems containing (imidazolium thiocyanate IL + thiophene), the mutual immiscibility with the lower critical solution temperature (LCST) was detected at the higher mole fraction range of the IL. The basic thermal properties of the pure ILs, i.e. melting and glass-transition temperatures as well as the enthalpy of fusion have been measured using a differential scanning microcalorimetry technique (DSC). The well-known NRTL equation has been used to correlate experimental SLE/LLE data sets.  相似文献   

15.
In this paper, the feasibility of using 1-ethyl-3-methylimidazolium ethylsulfate ionic liquid, [EMim][ESO4], as solvent for the extraction of toluene from aliphatic compounds (hexane, heptane, octane, or nonane) was analyzed. (Liquid + liquid) equilibrium (LLE) data for the ternary systems {alkane (1) + toluene (2) + [EMim][ESO4] (3)} were measured at T = 298.15 K and atmospheric pressure. Selectivity and solute distribution ratio were calculated from the experimental LLE data, and the obtained values were compared to those previously reported using other ionic liquids and sulfolane. The degree of consistency of the experimental LLE data was ascertained using the Othmer–Tobias equation. Finally, the experimental LLE data were satisfactorily correlated with NRTL and UNIQUAC models.  相似文献   

16.
In this work, the separation of benzene from aliphatic hydrocarbons (hexane, or heptane) is investigated by extraction with 1-ethyl-3-methylpyridinium ethylsulphate ionic liquid, [EMpy][ESO4]. (Liquid + liquid) equilibria (LLE) data are determined for the ternary systems: {hexane (1) + benzene (2) + [EMpy][ESO4] (3)} at T = (283.15, 293.15, 298.15, and 303.15) K and {heptane (1) + benzene (2) + [EMpy][ESO4] (3)} at T = (283.15 and 298.15) K and atmospheric pressure. The selectivity and distribution coefficient, derived from the tie line data, were used to determine whether the ionic liquid is a good solvent for the extraction of aromatic from aliphatic compounds. The consistency of the tie line data was ascertained by applying the Othmer–Tobias and Hand equations. The experimental results for the ternary systems were well correlated with the NRTL equation. A study of the temperature effect and the influence of the chain length of the alkanes were realized. The results obtained were compared with other ionic liquids. There are no literature data for the mixtures discussed in this paper.  相似文献   

17.
During recent last years, outstanding properties of ionic liquids such as low melting point, large liquid range and negligible volatility have turned them into possible volatile organic solvents replacers to break alcohol-alkane azeotropic mixtures. On this basis, two ionic liquids, butyltrimethylammoniumbis(trifluoromethylsulfonyl)imide, [BTMA][NTf2], and tributylmethylammoniumbis(trifluoromethylsulfonyl)imide, [TBMA][NTf2], were studied through ternary liquid+liquid equilibrium (LLE) of {alkane(1) + alcohol (2) + IL(3)} at T = 298.15 K and atmospheric pressure in order to consider the effect of ionic liquid cation alkyl chain length on the extraction process.The ILs capability as azeotrope breakers was determined by the calculation of parameters such as solute distribution ratio, β, and selectivity, S and this capability was compared with other bis (trifluoromethylsulfonyl)imide based ionic liquids from literature. The consistency of tie-line data was ascertained by applying the Othmer–Tobias and Hand equations. Finally, the experimental LLE were correlated by the Non Random Two Liquid (NRTL) thermodynamic model.  相似文献   

18.
We present a study on the effect of the alkyl chain length of the imidazolium ring in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids, [C1CnIm][NTf2] (n = 2 to 10), on the mixing properties of (ionic liquid + alcohol) mixtures (enthalpy and volume). We have measured small excess molar volumes with highly asymmetric curves as a function of mole fraction composition (S-shape) with more negative values in the alcohol-rich regions. The excess molar volumes increase with the increase of the alkyl-chain length of the imidazolium cation of the ionic liquid. The values of the partial molar excess enthalpy and the enthalpy of mixing are positive and, for the case of methanol, do not vary monotonously with the length of the alkyl side-chain of the cation on the ionic liquid – increasing from n = 2 to 6 and then decreasing from n = 8. This non-monotonous variation is explained by a more favourable interaction of methanol with the cation head group of the ionic liquid for alkyl chains longer than eight carbon atoms. It is also observed that the mixing is less favourable for the smaller alcohols, the enthalpy of mixing decreasing to less positive values as the alkyl chain of the alcohol increases. Based on the data from this work and on the knowledge of the vapour pressure of {[C1CnIm][NTf2] + alcohol} binary mixtures at T = 298 K reported in the literature, the excess Gibbs free energy, excess enthalpy and excess entropy could be then calculated and it was observed that these mixtures behave like the ones constituted by a non-associating and a non-polar component, with its solution behaviour being determined by the enthalpy.  相似文献   

19.
The solubility of hydrogen sulphide in three ionic liquids, viz. 1-hexyl-3-methylilmidazolium hexafluorophosphate ([hmim][PF6]), 1-hexyl-3-methylimidazolium tetrafluoroborate ([hmim][BF4]), and 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([hmim][Tf2N]), at temperatures ranging from 303.15 K to 343.15 K and pressures up to 1.1 MPa were determined. The solubility values were correlated using the Krichevsky–Kasarnovsky equation and Henry’s constants were obtained at different temperatures. Partial molar thermodynamic functions of solvation such as standard Gibbs free energy, enthalpy, and entropy were calculated from the solubility results. Comparison of the values obtained show that the solubility of H2S in these three ionic liquids was in the sequence: [hmim][BF4] > [hmim][PF6]  [hmim][Tf2N].  相似文献   

20.
Densities and viscosities of binary ionic liquids mixtures, 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ([eOHmim][BF4]) + 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ([eOHmim][BF4]) + N-butylpyridinium tetrafluoroborate ([bpy][BF4]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) + N-butylpyridinium tetrafluoroborate ([bpy][BF4]) were measured over the entire mole fraction from T = (298.15 to 343.15) K. The excess molar volumes were calculated and correlated by Redlich–Kiser polynomial expansions. The viscosities for pure ionic liquids were analyzed by means of the Vogel–Tammann–Fulcher equation and ideal mixing rules were applied for the ILs mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号