首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption and degradation of the nerve agent simulant dimethyl methylphosphonate (DMMP) over UV-irradiated TiO(2) powders and thin films has been investigated. Adsorption of vapor-phase DMMP on TiO(2) powder is characterized by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Photochemically assisted oxidation of adsorbed DMMP is carried out in situ by irradiation of samples in the DRIFTS accessory, giving kinetic data and information on specific site binding of DMMP and catalyst poisoning. Gas-phase intermediates from a static vapor phase reaction are identified by gas chromatography-mass spectrometry analysis, and surface-bound intermediates and products are analyzed by high-performance liquid chromatography-mass spectrometry, and ion chromatography of both aqueous and organic extractions from the TiO(2). Adsorbed DMMP is photodegraded in a stepwise fashion to give methylphosphonic acid, PO(4)(3-), H(2)O, and CO(2) as products. A proposed reaction pathway is consistent with a rapid degradation of DMMP but with extensive poisoning of the catalyst by surface-bound phosphonate products.  相似文献   

2.
The thermal decomposition of dimethyl methylphosphonate (DMMP), which is a simulant molecule for organophosphorus nerve agents, has been investigated on Cu clusters as well as on Cu films deposited on a TiO(2)(110) surface. Scanning tunneling microscopy studies were conducted to characterize the cluster sizes and surface morphologies of the deposited Cu clusters and films. Temperature-programmed desorption experiments demonstrated that the surface chemistry of DMMP is not sensitive to the size of the Cu clusters over the range studied in this work. DMMP reaction on an annealed 40 monolayer Cu film resulted in the desorption of H(2), methane, methyl, formaldehyde, methanol, and molecular DMMP, and reaction on the small (4.4 +/- 0.9 nm diameter, 1.8 +/- 0.6 nm height) and large (10.7 +/- 1.9 nm diameter, 4.8 +/- 1.0 nm height) Cu clusters generated similar products. Formaldehyde and methane production is believed to occur via a methoxy intermediate on the Cu surface. These products are favored on the higher coverage Cu films that completely cover the TiO(2) surface since competing reaction pathways on TiO(2) are suppressed. X-ray photoelectron spectroscopy studies showed that DMMP begins to decompose on the Cu clusters upon adsorption at room temperature and that atomic carbon, atomic phosphorus, and PO(x) remain on the surface after DMMP decomposition.  相似文献   

3.
In this study, FTIR spectroscopy and solid-state magic angle spinning (MAS) NMR were used to investigate the adsorption and thermal reaction of the nerve gas simulant dimethyl methylphosphonate (DMMP) in nanocrystalline NaY with a crystal size of approximately 30 nm. DMMP adsorbs molecularly in nanocrystalline NaY at 25 degrees C. Gas-phase products of the reaction of DMMP and oxygen in nanocrystalline NaY at 200 degrees C were monitored by FTIR spectroscopy and determined to be carbon dioxide (major product), formaldehyde, and dimethyl ether. In the presence of water, the thermal reaction of DMMP in nanocrystalline NaY at 200 degrees C yielded methanol (major product), carbon dioxide, and dimethyl ether. When the thermal reaction of DMMP in nanocrystalline NaY at 200 degrees C was conducted in the presence of water and oxygen, the predominant products were methanol and carbon dioxide. Hydroxyl sites located on the external zeolite surface were consumed during the DMMP thermal reactions as monitored by FTIR spectroscopy and were therefore determined to be the active sites in this reaction. 31P solid-state MAS NMR experiments were used to identify the surface-bound phosphorus complexes. The reactivity per gram of zeolite was comparable to other recently studied metal oxides such as MgO, Al2O3, and TiO2, and was found to have comparable, if not higher reactivity. Future improvements in reactivity may be achieved by incorporating a reactive transition metal ion or metal oxide nanocluster into the nanocrystalline NaY to enhance reaction rates and to achieve complete reaction of DMMP.  相似文献   

4.
环境湿度对TiO2/活性炭纤维气-固光催化氧化甲苯的影响   总被引:1,自引:0,他引:1  
在恒温控湿的环境舱中,以自制的TiO2/ACF(活性炭纤维)为光催化剂,研究了环境湿度对甲苯光催化降解过程的影响.通过N2吸附和扫描电子显微镜分别对TiO2/ACF光催化剂的孔径结构和形貌特征进行了表征;利用GC-MS和GC-FID对甲苯光催化过程中生成的中间产物进行了定性及定量分析.结果表明,环境舱中相对湿度增大,甲苯光催化转化率提高;不同相对湿度下,积累在光催化剂表面的中间产物种类相同,但支链氧化产物(苯甲醇、苯甲醛和苯甲酸)的积累量远多于苯环氧化产物(甲酚和对甲基苯酚)的积累量;随环境相对湿度的增大,苯甲醛在光催化剂表面的积累量减小,其余中间产物的积累量均有不同程度的增加.这说明水分子在甲苯光催化过程中起重要作用,相对湿度不仅影响甲苯的光催化转化效率,还影响其光催化转化的过程.尽管在各湿度条件下,支链氧化都是甲苯光催化降解的主要途径,但环境湿度增大更有利于苯环氧化途径的进行.讨论了水蒸气在甲苯光催化氧化过程中的作用机理.  相似文献   

5.
In this paper, an efficient flame retardant polyurethane foam (PUF) material consisting of phosphorus-halogen flame retardants has been prepared by adding dimethyl methylphosphonate (DMMP) and tris(1-chloro-2-propyl) phosphate (TCPP). The limiting oxygen index measurement and thermal analysis have been used for accessing the flame retardancy and thermal properties of the PUF sample. Thermal decomposition process of the sample and its evolved gaseous products at different temperatures during pyrolyzing have been investigated and identified via thermogravimetric analysis by coupling with Fourier transform infrared spectrometry. Influence of DMMP and TCPP on the evolved gaseous products during pyrolysis has been discussed here.  相似文献   

6.
Infrared attenuated total reflection spectroscopy has been used to study the interaction of DMMP vapor with SiO(2), Al(2)O(3), and AlO(OH) vs relative humidity (RH) and DMMP partial pressure (P/P(0)). For SiO(2) the growth with increasing RH of ice-like and liquid-like layers is seen in agreement with previous work. H?D exchange during exposure to H(2)O and D(2)O indicates that the ice-like layer is more resistant to exchange, consistent with stronger H-bonding than in the liquid-like layer. Exposure of nominally dry SiO(2) to D(2)O indicates the existence of adsorbed H(2)O that does not exhibit an ice-like spectrum. The ice-like layer appears only at a finite RH. Exposure of SiO(2) to DMMP in the absence of intentionally added H(2)O shows the formation of a strongly bound molecular species followed by a liquid-like layer. The strong interaction involves SiO-H···O═P bonds to surface silanols and/or HO-H···O═P bonds to preadsorbed molecular H(2)O. At a finite RH the ice-like layer forms on SiO(2) even in the presence of DMMP up to P/P(0) = 0.30. DMMP does not appear to penetrate the ice-like layer under these conditions, and the tendency to form a such a layer drives the displacement of DMMP. Amorphous Al(2)O(3) and AlO(OH) do not exhibit an ice-like H(2)O layer. Both have a higher surface OH content than does SiO(2), which leads to higher coverages of H(2)O or DMMP at equivalent RH or P/P(0). At low P/P(0), for which adsorption is dominated by Al-OH···O═P bonding, a-Al(2)O(3) interacts with DMMP more strongly than does AlO(OH) as a result of the higher acidity of OH sites on the former. Up to RH = 0.30 and P/P(0) = 0.30, DMMP appears to remain bonded to the surface rather than being displaced by H(2)O. H(2)O appears to have little or no effect on the total amount of DMMP adsorbed on any of these surfaces, up to an RH of 0.30 and a P/P(0) of 0.30. The results have implications for the transport of DMMP and related molecules on oxide surfaces in the environment.  相似文献   

7.
The oxidation of dimethyl methylphosphonate (DMMP) was examined under ultrasonic conditions (640 kHz) in oxygen saturated aqueous solutions. Acetic acid, formic acid, methylphosphonic acid, phosphate, and oxalic acid have been identified as the major products produced during the sonolytic irradiation of DMMP. The initial rates of oxidation were determined as a function of initial DMMP concentration. The kinetic behavior of the system is consistent with the Langmuir-Hinshelwood model implying oxidative processes occur at or near the gas-liquid interface during cavitation. Mechanistic implications and conclusions are discussed based on the product distributions and kinetic parameters.  相似文献   

8.
光催化可实现污染物降解、分解水制氢和CO2还原等多种氧化还原反应, 因而受到了广泛关注. 光催化材料中光生电荷的数目与氧化还原能力直接影响光催化反应效率, 在许多光催化反应中, 光生空穴氧化反应被认为速控步骤. 以光催化分解水为例, 质子的还原是单电子过程, 水氧化产生氧气则涉及四个电子. 空穴的高能量不仅可赋予其高的氧化能力,还能提高其迁出表面的能力, 因此具有重要研究价值.我们组的前期工作表明, 以TiB2作为前驱体, 采用水热合成和焙烧两步法可制备出间隙硼掺杂的金红石相或锐钛矿相TiO2, 间隙硼掺杂可显著降低价带顶, 提升光催化氧化水产氧性能. 然而, 在已有的结果中, 间隙硼掺杂浓度在TiO2中均呈现从内向外逐渐增加的梯度分布, 这意味着硼掺杂浓度有限, 且表层更低的价带顶不利于体相光生空穴向表面迁移, 因此亟需实现TiO2中均相的间隙硼掺杂.本文以湿化的氩气为水解环境, 将水解过程限域在TiB2的表面以减少硼原子流失; 同时提高水解温度, 使残留的硼原子形成间隙掺杂, 避免其在二次焙烧时扩散, 从而在TiB2核的表面所形成的TiO2壳层中实现均相间隙硼掺杂, 显著提高了光催化氧化水产氧活性. 多种表征结果表明, 直径约为6-10 μm的TiB2核表面形成了厚约400 nm的TiO2壳层, 在TiO2/TiB2中TiO2壳层重量比约为30%, TiO2壳层中锐钛矿相TiO2占比为65 wt%, 金红石相TiO2占比为35 wt%. TiO2壳层中间隙硼为均相分布, 硼掺杂显著降低了价带顶位置, 提高了光生空穴的氧化能力, 从而使得TiB2/TiO2展现出比未掺杂的金红石、锐钛矿相及两者混合相的TiO2均具有更高的光催化氧化水产氧的能力.  相似文献   

9.
The photodecomposition of dimethyl methylphosphonate (DMMP) and trimethyl phosphate (TMP) adsorbed on monoclinic WO3 powders when irradiated by ultraviolet light (UV) in air, oxygen, and under evacuation was investigated using infrared spectroscopy (IR). The IR spectra show that DMMP decomposes into methyl phosphonate upon exposure to 254 nm UV for 2 h at room temperature in air. The same decomposition of DMMP occurs only at temperatures above 300°C without UV illumination. TMP differs from DMMP in that the photodecomposition product is not the same as the decomposition product obtained by heating above 300°C. Thermal decomposition leads to formation of a phosphate on the surface, whereas photodecomposition leads to the same adsorbed methyl phosphonate as found for the thermal or photodecomposition of DMMP. Since TMP does not contain a P-CH3 bond, the formation of a methyl phosphonate on the surface after UV illumination involves a mechanism where CH3 groups migrate from the methoxy group to the phosphorous central atom. No decomposition is observed at room temperature when DMMP or TMP adsorbed on WO3 is irradiated under vacuum or in nitrogen atmosphere. Therefore, the photodecomposition of either DMMP or TMP adsorbed on WO3 at room temperature does not involve a reaction with the lattice oxygen but rather a reaction with the oxygen radicals produced by the decomposition of ozone.  相似文献   

10.
High surface area porous W/Sn oxide nanomaterials were prepared via water/oil based (W/O) emulsion. Tungstic acid solution was generated by cation exchange of sodium tungstate in acidic Dowex resin. The acid was then mixed with a clear homogeneous aqueous N-cetyl trimethyl ammonium bromide (CTAB) solution followed by a slow addition of 0.2 M SnCl4 solution. The mixture was stirred for 24 h and then subjected to slow calcination at 500 °C. The prepared materials were characterized using SEM-EDX, BET surface area, and sorption of nitrogen and water. Fourier transform infrared spectroscopy (FTIR) was used to characterize the surface acidic properties using pyridine vapor as a probe. The materials were then tested toward the Dimethyl methylphosphonate (DMMP) adsorption at various temperatures using infrared spectroscopy. At elevated temperatures, the desorption of DMMP from WO3 and SnO2 surfaces results in forming methyl phosphonate that strongly bounds on the metal oxide surfaces. In contrast, the FTIR spectra showed that the adsorbed dimethyl methylphosphonate (DMMP) on the mixed W/Sn oxide powders can be molecularly desorbed without any decomposition.  相似文献   

11.
Preparation processes for Pt-deposited TiO(2) (Pt/TiO(2)) by the synthesis of Pt nanoparticles and their deposition were pursued by transmission electron microscopy, extended X-ray absorption fine structure, UV-vis spectroscopy, and Fourier transform infrared spectroscopic studies. Colloidal dispersions of Pt particles stabilized by poly(N-vinyl-2-pyrrolidone) (PVP) were photochemically synthesized in aqueous ethanol solution. The average diameter of Pt particles was estimated to be 2.0 +/- 0.5 nm, which was almost unchanged by changing the reducing agent from ethanol to methanol and 2-propanol. The PVP-stabilized Pt particles were distributed over a TiO(2) surface only by mixing the Pt colloidal dispersions and TiO(2). CO was chemically coordinated on the Pt particles on a TiO(2) surface after heat treatment was carried out in an O(2) flow at 673 K to completely remove the residual PVP on Pt/TiO(2). Hydrogen reduction at 473 K did not increase the amount of CO adsorbed on Pt sites. The Pt/TiO(2) catalyst after the oxidation treatment showed higher activity for CO photooxidation than that obtained for pure TiO(2) catalyst. The CO photooxidation rate was not unchanged by the H(2) reduction.  相似文献   

12.
甲烷在Ni/TiO2催化剂表面的活化   总被引:2,自引:0,他引:2  
考察了Ni/TiO2催化剂甲烷部分氧化和二氧化碳重整制合成气的反应活性,实验表明,以TiO2为载体的镍系催化剂对于甲烷部分氧化制合成气反应具有较好的活性,尤其对H2的选择性较高,对二氧化碳重整制合成气反应具有较好的低温反应活性.采用脉冲-质谱在线分析等技术,在无气相氧条件下向Ni/TiO2催化剂脉冲CH4,发现甲烷在催化剂表面的活化(转化)及其氧化产物的选择性与金属催化剂表面氧的浓度密切相关.CH4与Ni/TiO2催化剂作用过程中存在明显的氢溢流和氧溢流现象,可能是这种溢流效应使得Ni/TiO2催化剂具有良好的反应活性和抗积碳性能.  相似文献   

13.
在分子尺度上介绍了Au/TiO2(110)模型催化剂表面和单晶Au表面CO氧化反应机理和活性位、以及H2O的作用.在低温(<320 K), H2O起着促进CO氧化的作用, CO氧化的活性位位于金纳米颗粒与TiO2载体界面(Auδ+–Oδ––Ti)的周边. O2和H2O在金纳米颗粒与TiO2载体界面边缘处反应形成OOH,而形成的OOH使O–O键活化,随后OOH与CO反应生成CO2.300 K时CO2的形成速率受限于O2压力与该反应机理相印证.相反,在高温(>320 K)下,因暴露于CO中而导致催化剂表面重组,在表面形成低配位金原子.低配位的金原子吸附O2,随后O2解离,并在金属金表面氧化CO.  相似文献   

14.
Rate constants for the reactions of OH radicals and NO3 radicals with dimethyl phosphonate [DMHP, (CH3O)2P(O)H], dimethyl methylphosphonate [DMMP, (CH3O)2P(O)CH3], and dimethyl ethylphosphonate [DMEP, (CH3O)2P(O)C2H5] have been measured at 296 +/- 2 K and atmospheric pressure using relative rate methods. The rate constants obtained for the OH radical reactions (in units of 10(-12) cm3 molecule(-1) s(-1)) were as follows: DMHP, 4.83 +/- 0.25; DMMP, 10.4 +/- 0.6; and DMEP, 17.0 +/- 1.0, with a deuterium isotope effect of k(OH + DMMP)/k(OH + DMMP-d9) = 4.8 +/- 1.2. The rate constants obtained for the NO3 radical reactions (in units of 10(-16) cm3 molecule(-1) s(-1)) were as follows: DMHP, < 1.4; DMMP, 2.0 +/- 1.0; and DMEP, 3.4 +/- 1.4. Upper limits to the rate constants for the O3 reactions of < 8 x 10(-20) cm3 molecule(-1) s(-1) for DMHP and < 6 x 10(-20) cm3 molecule(-1) s(-1) for DMMP and DMEP were determined. Products of the reactions of OH radicals with DMHP, DMMP, and DMEP were investigated in situ using atmospheric pressure ionization mass spectrometry (API-MS) and, for the DMMP and DMEP reactions, Fourier transform infrared (FT-IR) spectroscopy. API-MS analyses showed the formation of products of molecular weight 96 and 126, attributed to CH3OP(O)(H)OH and (CH3O)2P(O)OH, respectively, from DMHP; of molecular weight 110, attributed to CH3OP(O)(CH3)OH, from DMMP; and of molecular weight 124 and 126, attributed to CH3OP(O)(C2H5)OH and (CH3O)2P(O)OH, respectively, from DMEP. FT-IR analyses showed formation (values given are % molar yields) of the following: from DMMP, CO, 54 +/- 6; CO2, 5 +/- 1 in dry air; HCHO, 3.9 +/- 0.7; HC(O)OH, < 1.4 in dry air; RONO2, approximately 4; and formate ester, approximately 8; and from DMEP, CO, 50 +/- 7; CO2, 11 +/- 4; CH3CHO, 18 +/- 8; HCHO, < 7; HC(O)OH, < 6; RONO2, < or = 5; and formate ester, 5.0 +/- 1.5. Possible reaction mechanisms are discussed.  相似文献   

15.
The present article reviews recent works in our laboratory about the sensing properties to toxic gases using nanostructured WO(3), TiO(2), FTiO(2), and CuO functionalized quartz crystal microbalance (QCM) sensors. WO(3) and TiO(2) functionalized QCM sensors have much shorter response time than those functionalized by conventional hydrogen-bond acidic branched copolymers for detection of dimethyl methylphosphonate (DMMP). FTiO(2) functionalized QCM sensors can improve the gas sensing characteristics by shortening the response time but at the price of partial irreversibility. The sensing mechanism was examined by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Varied CuO nanostructures were synthesized by simple modulation of reaction conditions. All the as-prepared CuO was applied on QCM resonators and explored for HCN sensing. Surprisingly, responses of all the sensors to HCN were found to be in an opposite direction as compared with other common volatile substances, offering excellent selectivity for HCN detection. The sensitivity was very high, and the response and recovery were very fast. Comparison of the specific surface areas of CuO nanostructures showed that CuO of higher surface area is more sensitive than that of lower surface area, indicating that the specific surface area of these CuO nanostructures plays an important role in the sensitivity of related sensors. Based on experimental results, a sensing mechanism was proposed in which a surface redox reaction occurs between CuO and Cu(2)O on the CuO nanostructures reversibly upon contact with HCN and air, respectively. The CuO functionalized QCM sensors are considered to be a promising candidate for trace HCN gas detection in practical applications.  相似文献   

16.
波长对Ag/TiO2催化剂上二氧化碳光催化还原的影响   总被引:1,自引:0,他引:1  
Photocatalytic reduction of CO2 by water was performed in the presence of a Ag/TiO2 catalyst under illumination by lamps with different wavelengths(254,365,and 400 nm).The yields of the main products(methane and methanol)were higher with the 254 nm lamp than with the 365 lamp while no products were observed with the 400 nm lamp.This was because the electron-hole generation rate increased with increasing energy of irradiation(decreasing wavelength)and there were higher densities of electron states at higher energies in TiO2. The increased efficiency of electron-hole generation with a shorter wavelength irradiation increased the efficiency of the catalyst.The energy of the electrons excited by visible light(400 nm)was too low for CO2 photocatalytic reduction.  相似文献   

17.
Dimethyl methylphosphonate (DMMP) and diethyl methylphosphonate (DEMP) are readily mineralized by photoexcited titanium dioxide (TiO2). Intermediate products include low molecular weight organic acids and methylphosphonic acid. Complete mineralization yields phosphate and carbon dioxide. The photoactivities of different types of TiO2 were investigated. The decomposition kinetics of DMMP and effects of DMMP and catalyst concentration, sonication, solar irradiation, oxygen concentration, temperature, and hydrogen peroxide on the rate of decomposition are reported. The degradation rates increase with simultaneous sonication, addition of hydrogen peroxide, and at higher temperatures.  相似文献   

18.
二氧化钛基固体超强酸的结构及其光催化氧化性能   总被引:46,自引:1,他引:46  
采用溶胶-凝胶法制备了多孔性,大比表面积的SO4^2-/TiO2固体超强催化剂,运用XRD,BET比表面积测定,XPS和UV-Vis反射光谱等技术对该催化剂的结构,表面状态以及半导体特征进行了表征,并通过CH3Br,C6H6和C2H4等典型有机物的气相光催化氧化反应。  相似文献   

19.
Photocatalytic reduction of CO(2) on CuO-TiO(2) composite catalysts in the presence of methanol to prepare methyl formate had been investigated. Methanol was used as sacrificial reagent to react with the photo-generated holes in the valence band, and CO(2) was reduced by the electrons in the conduction band. CuO-TiO(2) was optimized for CuO loading, preparation method and calcination temperature. The catalyst of 1.0CuO-TiO(2), calcined at 450°C and CTAB as a dispersant showed the highest overall activity. The heterojunction between CuO and TiO(2) demonstrated with HRTEM played an important role in enhancing the photocatalytic activity.  相似文献   

20.
甲烷在Ni/TiO_2催化剂表面的活化   总被引:1,自引:0,他引:1  
考察了Ni/TiO2催化剂甲烷部分氧化和二氧化碳重整制合成气的反应活性,实验表明,以TiO2为载体的镍系催化剂对于甲烷部分氧化制合成气反应具有较好的活性,尤其对H2的选择性较高,对二氧化碳重整制合成气反应具有较好的低温反应活性.采用脉冲-质谱在线分析等技术,在无气相氧条件下向Ni/TiO2催化剂脉冲CH4,发现甲烷在催化剂表面的活化(转化)及其氧化产物的选择性与金属催化剂表面氧的浓度密切相关.CH4与Ni/TiO2催化剂作用过程中存在明显的氢溢流和氧溢流现象,可能是这种溢流效应使得N/TiO2催化剂具有良好的反应活性和抗积碳性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号