首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Nanocellulose has aroused growing attention in the design and fabrication of multifarious soft actuators thanks to its abundant source, appropriate mechanical properties, and sustainability. In this mini-review, an up-to-date account of recent progresses in nanocellulose-based actuators with homogeneous and heterogeneous structures is provided. The fundamental design concepts and synthesis strategies for nanocellulose-based soft actuators with a wide array of micro-architecture are described. Moreover, their actuation mechanisms, structure–function relationships, and emerging applications in the fields of soft robotics, biomedical science and bioelectronics are highlighted. Finally, a brief conclusion, the current challenges, and future perspectives in the development of nanocellulose-based actuators is presented. This mini-review provides new insights into the fundamental research and the technological application of advanced nanocellulose-based soft actuators.  相似文献   

5.
6.
Two strategies for the design of thermosensitive coatings based on poly‐N‐isopropyl acrylamide (PNIPAM) derivatives are presented: 1) polyelectrolyte multilayers containing a diblock copolymer with a large PNIPAM block and 2) adsorption of PNIPAM microgels. The multilayers show only a small but irreversible response to the increase of outer temperature due to the strong interdigitation between the charged part and the temperature‐sensitive block, while the adsorbed microgels show a pronounced and reversible response. It will be shown that the microgel number density can be easily controlled at the substrate. The swelling and shrinking of two extremes in density are characterized: densely packed microgels, which are considered as a film, and individual microgels, which are able to swell and shrink also lateral to the surface.  相似文献   

7.
8.
9.
Scanning transitiometry combines three state variables (P,V,T) with a heat effect measured in strictly defined thermodynamic conditions. By slowly scanning one of the state variables when the other one is kept constant, the transitiometer permits to determine simultaneously two thermodynamic derivatives, always one is thermal and the other one mechanical. This study presents a number of applications of scanning transitiometry in various fields (dense liquids, supercritical systems, polymers, food systems) and presents results, often impossible to obtain with other known techniques.  相似文献   

10.
Liquid crystal elastomers (LCEs) are a unique class of materials which combine rubber elasticity with the orientational order of liquid crystals. This combination can lead to materials with unique properties such as thermal actuation, anisotropic swelling, and soft elasticity. As such, LCEs are a promising class of materials for applications requiring stimulus response. These unique features and the recent developments of the LCE chemistry and processing will be discussed in this review. First, we emphasize several different synthetic pathways in conjunction with the alignment techniques utilized to obtain monodomain LCEs. We then identify the synthesis and alignment techniques used to synthesis LCE‐based composites. Finally, we discuss how these materials are used as actuators and sensors. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 395–411  相似文献   

11.
A new homologous series of SCLCPs containing the 4-cyanobiphenyl mesogenic group attached to the polymaleimide backbone through paraffinic spacers of two to eight methylene units have been prepared. All the polymers exhibit liquid crystalline behavior; specifically SAd- (or SC-) like and nematic phases are observed. The glass transition temperature decreases from 150 to 43°C on increasing spacer length. The isotropization temperatures exhibit an odd–even effect on varying the length and parity of the spacer, in which the odd members exhibit the higher values. This is attributed to the change in the average shape of the side chain as the parity of spacer is varied. The isotropization temperatures (>300–120°C) and the mesophase thermal stabilities (190–60°C) are high. Comparison is made with polymers containing the same mesogenic group attached to backbones of decreasing rigidity. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2531–2546, 1998  相似文献   

12.
Stimuli-responsive polymers are capable of translating changes in their local environment to changes in their chemical and/or physical properties. This ability allows stimuli-responsive polymers to be used for a wide range of applications. In this review, we highlight the analytical applications of stimuli-responsive polymers that have been published over the past few years with a focus on their applications in sensing/biosensing and separations. From this review, we hope to make clear that while the history of using stimuli-responsive polymers for analytical applications is rich, there are still a number of directions to explore and exciting advancements to be made in this flourishing field of research.  相似文献   

13.
14.
15.
A strong concentration dependence of the solvent–polymer interaction parameter χ is known to be a requirement for the first‐order volume phase transition in uncharged polymer networks in solvents. Another possibility for the observation of phase transition in nonpolar networks is to increase the number of lattice sizes occupied by a solvent molecule. This possibility has been indicated earlier and is worked out in detail in this paper. Using the theory of swelling equilibrium, we examine the polymer network systems immersed in a polymer melt. The critical conditions for the phase transition in both uncharged and ionic networks are described.  相似文献   

16.
17.
18.
Secondary structures such as α‐helix and β‐sheet are the major structural motifs within the three‐dimensional geometry of proteins. Therefore, structure transitions from β‐sheet to α‐helix not only can serve as an effective strategy for the therapy of neurological diseases through the inhibition of β‐sheet aggregation but also extend the application of α‐helix fibrils in biomedicine. Herein, we present a charge‐induced secondary structure transition of amyloid‐derived dipeptide assemblies from β‐sheet to α‐helix. We unravel that the electrostatic (charge) repulsion between the C‐terminal charges of the dipeptide molecules are responsible for the conversion of the secondary structure. This finding provides a new perspective to understanding the secondary structure formation and transformation in the supramolecular organization and life activity.  相似文献   

19.
Hydrogels are formed when a three‐dimensional polymeric network is loosely crosslinked. They are swollen by water but not dissolved in it. Hydrogels may display reversible sol–gel transitions, induced by changes in the environmental conditions such as temperature, pH, ionic strength, phase separation, wave length of light, crystallinity, etc. Hydrogel is described as smart or intelligent when sharp transition is induced by small change in such conditions. For the shape‐memory hydrogels, reversible change in shape may also be induced by such stimuli. The preparation and applications of the molecularly imprinted polymeric hydrogels (MIPs) are illustrated by a few examples. The use of shape sensitive hydrogels in microfluidic is mentioned. Application of hydrogels for chronobiology and chronotherapy is outlined. The conversion of hydrogels into aerogels and their respective properties is discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号