首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A novel formal [3+2] cycloaddition of cyclopropylacetals and aldehydes was developed, and the resulting trisubstituted tetrahydrofurans display three new chiral centers formed with highly diastereoselectivity. This method is stereocomplementary to most previously reported cycloadditions of malonate diesters, relies on the transient generation of cyclopropyl oxocarbenium ions, proceeds under mild conditions, and is based on the concept of temporary activation of an otherwise inert protecting group.  相似文献   

2.
A synergistic catalytic system for the first asymmetric addition of aldehydes to in situ generated prochiral oxocarbenium ions has been developed. The dual catalytic protocol allows the simultaneous activation of both electrophile and nucleophile and provides access to a variety of valuable chiral 2H-chromenes with excellent enantioselectivities.  相似文献   

3.
The limitations of stereoelectronic models in assessing the stereoselective nucleophilic substitution reactions of cyclic oxocarbenium ions at high reaction rates are discussed. Evidence is provided suggesting that the diastereoselectivity of nucleophilic substitution reactions is attenuated at the limits of diffusion control. The low diastereoselectivities observed in the reactions of trimethylsilyl cyanide with five- and six-membered ring oxocarbenium ions are attributed to the high reactivity of the nucleophile and its reactions with these electrophiles at diffusion control rates.  相似文献   

4.
[reaction: see text] A novel catalytic system has been developed for the enantioselective synthesis of beta-lactones from ketene and aldehydes.  相似文献   

5.
A general method has been developed for the asymmetric synthesis of 3-vinylidene tetrahydropyrans and 3-vinylidene oxepanes based on the Lewis acid-catalyzed intramolecular reactions of oxocarbenium ions with propargylsilanes. The observed excellent diastereoselectivity and a high asymmetric induction offer a new synthetic method with a wide scope and generality.  相似文献   

6.
We have developed an enantioselective, copper(I)-catalyzed addition of terminal alkynes to racemic isochroman acetals. This method is one of the first transition-metal-catalyzed approaches to enantioselective additions to prochiral oxocarbenium ions. In this reaction, TMSOTf is used to form the oxocarbenium ion in situ under conditions compatible with simultaneous formation of the chiral copper acetylide. By using a bis(oxazoline) ligand, good yields and enantioselectivities are observed for a variety of enantioenriched 1-alkynyl isochromans.  相似文献   

7.
《Tetrahedron letters》1988,29(43):5541-5544
The pKa values for OH-acidity of protonated simple carbonyl compounds (oxocarbenium ions) are estimated from keto-enol equilibrium constants combined within CH-acidity constants of the ions, calculated by application of the Marcus equation to the ketonisation process.  相似文献   

8.
The additions of nucleophiles to oxocarbenium ions derived from oxasilacyclopentane acetates proceeded with high diastereoselectivity in most cases. Sterically demanding nucleophiles such as the silyl enol ether of diethyl ketone add to the face opposite the C-2 substituent. These reactions establish the syn stereochemistry about the newly formed carbon-carbon bond. Small nucleophiles such as allyltrimethylsilane do not show this same stereochemical preference: they add from the same face as the substituent in C-2-substituted oxocarbenium ions. The stereoselectivities exhibited by both small and large nucleophiles can be understood by application of the "inside attack" model for five-membered ring oxocarbenium ions developed previously for tetrahydrofuran-derived cations. This stereoelectronic model requires attack of the nucleophile from the face of the cation that provides the products in their lower energy staggered conformations. Small nucleophiles add to the "inside" of the lower energy ground-state conformer of the oxocarbenium ion. In contrast, sterically demanding nucleophiles add to the inside of the envelope conformer where approach is anti to the C-2 substituent of the oxocarbenium ion, regardless of the ground-state conformer population.  相似文献   

9.
A general method has been developed for the stereoselective construction of 2,6-disubstituted dihydropyrans based on the Lewis acid-catalyzed intramolecular reactions of oxocarbenium ions with vinylstannanes. This novel methodology was applied to the enantioselective total synthesis of (−)-centrolobine.  相似文献   

10.
Lewis acid mediated substitution reactions using [D]triethylsilane as a nucleophile at the anomeric center of the four pentofuranoses, ribose, arabinose, xylose, and lyxose, all proceed with good to excellent stereoselectivity to provide the 1,2‐cis adducts. To unravel the stereoelectronic effects underlying the striking stereoselectivity in these reactions we have mapped the energy landscapes of the complete conformational space of the oxocarbenium ions of the four pentofuranoses. The potential energy surface maps provide a detailed picture of the influence of the differently oriented substituents and their mutual interactions on the stability of the oxocarbenium ions and the maps can be used to account for the observed stereoselectivities of the addition reactions.  相似文献   

11.
Nucleophilic attack on seven‐membered‐ring oxocarbenium ions is generally highly stereoselective. The preferred mode of nucleophilic attack forms the product in a conformation that minimizes transannular interactions, thus leading to different stereoselectivity as compared to that of reactions involving six‐membered‐ring oxocarbenium ions.  相似文献   

12.
Asymmetric cinchona alkaloid-catalyzed acid chloride-aldehyde cyclocondensation (AAC) reactions afford enantioenriched 4-substituted and 3,4-disubstituted beta-lactones with near perfect absolute and relative stereocontrol. These reactions are characterized by the operational simplicity derived from using commercially available or easily obtained (one-step) reaction catalysts and in situ ketene generation from acid chlorides. The range of aldehyde substrates that serve as effective AAC substrates include sterically hindered aldehydes such as cyclohexanecarboxaldehyde and pivaldehyde.  相似文献   

13.
Catalytic asymmetric acyl halide-aldehyde cyclocondensation (AAC) reactions of alkyl-substituted ketenes with structurally diverse aldehydes provide cis-disubstituted beta-lactones with high enantioselectivity. The AAC reactions utilize a novel Al(III)-triamine catalyst in which the metal's dynamic coordination geometry leads to a highly selective catalyst complex. These AAC reactions represent a functional solution to highly enantioselective substituted ester enolate aldol additions.  相似文献   

14.
Factors affecting the cleavage of the carbon-oxygen bond in linear and cyclic aldehyde hydrates, heimacetals, acetals, and methyl ribosides and glucosides have been investigated using semiempirical calculations (AM1 and PM3). (For some systems, low- and high-level ab initio energies are available for comparison with the semiempirical results. With one exception, the results obtained by the two methods show excellent agreement in relative energies and trends in reactivity.) The effects on reactivity and stability caused by substituting a sulfur for the alpha oxygen in the oxocarbenium ion were also studied. In general, systems that can have an antiperiplanar alignment of lone pairs on the leaving group and potential oxocarbenium ion oxygens undergo spontanteous cleavage. An examination of various conformers of the leaving group relative to the potential oxocarbenium oxygen shows, however, that lone pair repulsion and steric factors for MeOH as the leaving group are more important than the antiperiplanar effect for bond cleavage. All compounds in which the alpha-oxygen in the potential carbenium ion is replaced by sulfur undergo spontaneous cleavage regardless of the leaving group or structure of the compound. Energy profiles, DeltaH(), and DeltaH(R) values show that linear and cyclic thiocarbenium ions are much more stable than the corresponding oxocarbenium ions. Comparison of results for methyl ribosides and glucosides with results for corresponding pyridinium substrates suggests that both should hydrolyze through an A-1 mechanism. General-acid catalysis with hydronium as the acid was studied. With solution results, the computations suggest that substrates with either a good leaving group or stable oxocarbenium ion react with rate-limiting proton transfer from the acid to the leaving group but that substrates with both a good leaving group and stable carbenium ion react with concerted proton transfer and bond cleavage.  相似文献   

15.
We report the diastereoselective addition of a variety of nucleophiles to alpha-(trimethylsilyl)benzyl-substituted oxocarbenium ions. The oxocarbenium ions are generated from alpha-acetoxy ethers, which are easily prepared via reductive acetylation of esters. The alpha-(trimethylsilyl)benzyl auxiliary produces good to excellent facial selectivity with a variety of nucleophiles, including silyl enol ethers, silyl ketene acetals, allylsilanes, and crotylsilanes. The utility of this auxiliary is further demonstrated in a complex ketone aldol coupling reaction. [reaction: see text]  相似文献   

16.
The 3D shape of glycosyl oxocarbenium ions determines their stability and reactivity and the stereochemical course of SN1 reactions taking place on these reactive intermediates is dictated by the conformation of these species. The nature and configuration of functional groups on the carbohydrate ring affect the stability of glycosyl oxocarbenium ions and control the overall shape of the cations. We herein map the stereoelectronic substituent effects of the C2-azide, C2-fluoride and C4-carboxylic acid ester on the stability and reactivity of the complete suite of diastereoisomeric furanoses by using a combined computational and experimental approach. Surprisingly, all furanosyl donors studied react in a highly stereoselective manner to provide the 1,2-cis products, except for the reactions in the xylose series. The 1,2-cis selectivity for the ribo-, arabino- and lyxo-configured furanosides can be traced back to the lowest-energy 3E or E3 conformers of the intermediate oxocarbenium ions. The lack of selectivity for the xylosyl donors is related to the occurrence of oxocarbenium ions adopting other conformations.  相似文献   

17.
Lewis acid-mediated nucleophilic substitution reactions of substituted tetrahydropyran acetates reveal that the conformational preferences of six-membered-ring cations depend significantly upon the electronic nature of the substituent. Nucleophilic substitutions of C-3 and C-4 alkyl-substituted tetrahydropyran acetates proceeded via pseudoequatorially substituted oxocarbenium ions, as would be expected by consideration of steric effects. Substitutions of C-3 and C-4 alkoxy-substituted tetrahydropyran acetates, however, proceeded via pseudoaxially oriented oxocarbenium ions. The unusual selectivities controlled by the alkoxy groups were demonstrated for a range of other heteroatom substituents, including nitrogen, fluorine, chlorine, and bromine. It is believed that the pseudoaxial conformation is preferred in the ground state of the cation because of an electrostatic attraction between the cationic carbon center of the oxocarbenium ion and the heteroatom substituent. This analysis is supported by the observation that selectivity diminishes down the halogen series, which is inconsistent with electron donation as might be expected during anchimeric assistance. The C-2 heteroatom-substituted systems gave moderately high 1,2-cis selectivity, while small alkyl substituents showed no selectivity. Only in the case of the tert-butyl group at C-2 was high 1,2-trans selectivity observed. These studies reinforce the idea that ground-state conformational effects need to be considered along with steric approach considerations.  相似文献   

18.
[reaction: see text] Acid chlorides and aromatic aldehydes react in the presence of a stoichiometric amount of a tertiary amine and catalytic amounts of a cinchona alkaloid derivative and a Lewis acid to produce beta-lactones in high diastereo- and enantioselectivity. The sense of the diastereoselectivity depends on the substitution of the acid chloride, with the reactions of aliphatic acid chlorides giving predominantly the trans-isomer and those of alkoxyacetyl chlorides favoring formation of the cis-isomer.  相似文献   

19.
Asymmetric, catalytic reactions of oxocarbenium ions are reported. Simple, chiral urea and thiourea derivatives are shown to catalyze the enantioselective substitution of silyl ketene acetals onto 1-chloroisochromans. A mechanism involving anion binding by the chiral catalyst to generate a reactive oxocarbenium ion is invoked. Catalysts bearing tertiary benzylic amide groups afforded highest enantioselectivities, with the optimal structure being derived from enantioenriched 2-arylpyrrolidine derivatives.  相似文献   

20.
Double diastereoselection in alkaloid-catalyzed acyl halide-aldehyde cyclocondensation (AAC) reactions provides a strategy for realizing syn- or anti-selective propionate aldol additions from a common reaction manifold. Matched AAC homologation of enantioenriched aldehydes afford cis-disubstituted beta-lactones as surrogates for syn aldols; the mismatched AAC reactions provide anti-selective aldols in the form of trans-disubstituted 2-oxetanones. The utility of this reaction technology in synthesis activities is exemplified in a catalytic asymmetric total synthesis of (-)-pironetin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号