首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A numerical model for bilayer organic light-emitting diodes (OLEDs) has been developed on the basis of trappedcharge limited conduction. The dependences of the current density on the operation voltage, the thickness andtrap properties of the hole transport layer (HTL) and emission layer (EML) in bilayer OLEDs of the structure an-ode/HTL/EML/cathode have been numerically investigated. It has been found that, for given values of reduced trapdepth, total trap density, and carrier mobility of HTL and EML, there exists an optimum thickness ratio of HTL tothe sum of HTL and EML, by which a maximal current density, and hence maximal quantum efficiency and luminance,can be achieved. The current density decreases quickly with the mean trap density, and decreases nearly exponentiallywith the mean reduced trap depth.  相似文献   

2.
李卫民  郭金川  周彬 《光子学报》2014,41(8):972-976
制备了结构为CuPc/缓冲层/C60异质结的有机光伏器件,分别选用三氧化钼和红荧烯为缓冲层,研究了增加缓冲层对器件性能的影响.结果表明,增加三氧化钼和红荧烯缓冲层后器件的开路电压和光电转换效率都得到提高,器件的短路电流密度和填充因子都有所降低.开路电压从没有缓冲层时的0.39 V分别提高到0.58 V、0.55 V,转换效率从0.36%提高到0.44%,短路电流从1.92 mA/cm2分别降低到1.77 mA/cm2、1.81 mA/cm2,填充因子从0.48分别减少到0.43、0.44.进一步研究表明器件的短路电流密度受缓冲层厚度的影响很大,当缓冲层厚度很小时,器件短路电流密度还有所增加,但随着缓冲层厚度的增加,短路电流密度逐渐减小,当缓冲层厚度为10 nm时,器件短路电流密度减少到0.35 mA/cm2.开路电压随着厚度的增加逐渐增加,从1 nm时的0.43 V增加10 nm时0.63 V.根据整数电荷转移模型和界面能级理论解释有机光伏器件开路电压提高以及短路电流密度减少的原因,为有机太阳能电池性能的改善提供了研究方法.  相似文献   

3.
缓冲夹层影响异质结有机光伏器件性能研究   总被引:1,自引:1,他引:0  
李卫民  郭金川  周彬 《光子学报》2012,41(8):972-976
制备了结构为CuPc/缓冲层/C60异质结的有机光伏器件,分别选用三氧化钼和红荧烯为缓冲层,研究了增加缓冲层对器件性能的影响.结果表明,增加三氧化钼和红荧烯缓冲层后器件的开路电压和光电转换效率都得到提高,器件的短路电流密度和填充因子都有所降低.开路电压从没有缓冲层时的0.39V分别提高到0.58V、0.55V,转换效率从0.36%提高到0.44%,短路电流从1.92mA/cm2分别降低到1.77mA/cm2、1.81mA/cm2,填充因子从0.48分别减少到0.43、0.44.进一步研究表明器件的短路电流密度受缓冲层厚度的影响很大,当缓冲层厚度很小时,器件短路电流密度还有所增加,但随着缓冲层厚度的增加,短路电流密度逐渐减小,当缓冲层厚度为10nm时,器件短路电流密度减少到0.35mA/cm2.开路电压随着厚度的增加逐渐增加,从1nm时的0.43V增加10nm时0.63V.根据整数电荷转移模型和界面能级理论解释有机光伏器件开路电压提高以及短路电流密度减少的原因,为有机太阳能电池性能的改善提供了研究方法.  相似文献   

4.
The uniformity of threshold voltage and threshold current in the In2Se3nanowire-based phase change memory(PCM)devices is investigated. Based on the trap-limited transport model, amorphous layer thickness, trap density, and trap depth are considered to clarify their influences upon the threshold voltage and threshold current through simulations.  相似文献   

5.
彭应全  张福甲  台夕市  何锡源  张旭 《中国物理》2002,11(10):1076-1081
The mechanism of carrier transport in organic light-emitting devices is numerically studied,on the basis of trappedcharge-limited conduction with an exponential trap distribution.The spatial distributions of the electrical potential,field and carrier density in the organic layer are calculated and analysed.Most carriers are distributed near the two electrodes,only a few of them are distributed over the remaining part of the orgaic layer,The carriers are accumulated near the electrodes,and the remaining region is almost exhausted of carriers.When the characteristic energy of trap distribution is greater than 0.3eV.it leads to a reduction of current density.In order to improve the device efficiency,organic materials with minor traps and low characteristic energy should be chosen.The diffusion current is the dominant component near the injection electrode.whereas the drift current dominates the remaining region of the organic layer.  相似文献   

6.
温度是影响有机发光器件特性的一个重要因素,考虑了电流的注入限制和体限制之后,运用数值方法,研究了在低电场下温度对单层有机发光器件的J-V特性以及电场和载流子在有机层中的分布的影响。结果表明,在一定电压下,温度升高时,器件电流增大,有机层中载流子及其梯度分布增大,电场强度分布梯度也增大。并且当温度逐渐升高时,器件的电流传导将趋向于体限制,而当温度逐渐降低时,器件电流传导将趋向于注入限制,此时有机层内各处电场强度趋于均匀。并且结果表明,数值结果与实验结果符合得比较好。  相似文献   

7.
A numerical model for current conduction in single layer OLEDs including both injection and bulk effect is proposed. Based upon this model, a nearly linear distribution of the electric field was found, and the slope of the distribution, or the field at the injection electrode (F0) is dependent on the energy barrier, mobility, trap density and trap depth. F0 equals the half of the mean field of the device (Fm), which equals the quotient of the bias to the thickness of organic layer, is proposed as the limit for bulk-limited (BL) and injection-limited (IL) conduction. OLEDs with F0 greater than Fm/2 are considered as IL-conducting, while those with F0 less than Fm/2 are considered as BL-conducting. It was found that, the state of current conduction is not only determined by the energy barrier at the injection electrode, but also by the mobility, trap density and trap depth of the organic semiconductor. OLEDs with high injection barrier (>0.7 eV), trap density less than 1019 cm-3, and reduced trap depth shallower than 5, will be IL-conducting, while those with low energy barrier (<0.2 eV), low carrier mobility (<10-6 cm2V-1s-1), and trap density higher than 1017 cm-3, will be BL-conducting. PACS 78.60.Fi; 75.40.Mg; 73.21.Ac  相似文献   

8.
Current bistable properties and negative differential resistance (NDR) behaviors of organic bistable devices (OBDs) with a single layer were simulated by using Shockley–Reed statistics for the trap population. The current–voltage (IV) curves were calculated to investigate the effects of the trap density on the NDR characteristics of current bistabilities in the OBDs. The simulation results of the IV curves showed that the current bistability and the NDR behavior of the OBDs were dominantly attributed to the trapped electrons in the organic layer. The NDR behavior of the IV curve appeared with increasing trap density, and the increasing rate of the internal electric field caused by the trapped electrons became larger than that of the external electric field due to the applied voltage. This resulted in the appearance of NDR behavior in the IV curves. These results can help improve understanding of the effects of the trap density on the current bistability and the origin of the NDR behavior in the IV characteristic in OBDs.  相似文献   

9.
刘骐萱  王永平  刘文军  丁士进 《物理学报》2017,66(8):87301-087301
研究了基于Ni电极和原子层淀积的ZrO_2/SiO_2/ZrO_2对称叠层介质金属-绝缘体-金属(MIM)电容的电学性能.当叠层介质的厚度固定在14nm时,随着SiO_2层厚度从0增加到2nm,所得电容密度从13.1 fF/μm~2逐渐减小到9.3fF/μm~2,耗散因子从0.025逐渐减小到0.02.比较MIM电容的电流-电压(I-V)曲线,发现在高压下电流密度随着SiO_2厚度的增加而减小,在低压下电流密度的变化不明显,还观察到电容在正、负偏压下表现出完全不同的导电特性,在正偏压下表现出不同的高、低场I-V特性,而在负偏压下则以单一的I-V特性为主导.进一步对该电容在高、低场下以及电子顶部和底部注入时的导电机理进行了研究.结果表明,当电子从底部注入时,在高场和低场下分别表现出普尔-法兰克(PF)发射和陷阱辅助隧穿(TAT)的导电机理;当电子从顶部注入时,在高、低场下均表现出TAT导电机理.主要原因在于底电极Ni与ZrO_2之间存在镍的氧化层(NiO_x),且ZrO_2介质层中含有深浅两种能级陷阱(分别为0.9和2.3 eV),当电子注入的模式和外电场不同时,不同能级的陷阱对电子的传导产生作用.  相似文献   

10.
制备了不同电极、不同厚度、以8-羟基喹啉铝螯合物(Alq3)为发光层的有机薄膜电致发光(TFEL)器件。分析了它们的电流密度-电压关系。不同阳极器件的电流变化很大,而改变阴极时电流密度的变化较小,说明电流以空穴为主。根据不同阴极器件的电致发光效率的比较,说明电子是决定器件电致发光效率的少数载流子。从不同厚度的器件的结果讨论了载流子的传输性质,认为在ITO/Alq3/Al器件中的电流符合陷阱限制的空间电荷电流.  相似文献   

11.
聂国政  邹代峰  钟春良  许英 《物理学报》2015,64(22):228502-228502
制备了基于内嵌氧化物铜(CuO)薄膜的并五苯薄膜晶体管器件. 将3 nm CuO薄膜内嵌入到并五苯(pentacene)中, 作为空穴注入层, 降低电极与并五苯之间的空穴注入势垒. 相对于纯并五苯薄膜晶体管器件, 研制的晶体管的迁移率、阈值电压(VTH)、电流开关比(Ion/Ioff) 等参数都有明显改善. X射线光电子能谱数据表明, 这种空穴注入势垒的降低源自并五苯向CuO的电子转移.  相似文献   

12.
An X-ray structural study of thermally evaporated metal-free phthalocyanine thin films with various film thicknesses was performed. All samples studied had polycrystalline structure and the unit cell was found to be of the α-form. Variation of the deposition rate from 0.5 to 1 nm s−1 had little effect on the structure. The films exhibit preferential orientation at low thickness; however, at higher thickness they become less orientated as additional peaks appear in the spectrum. The increase in the intensity of the first significant low angle peak with increasing thickness is attributed to the increased volume of the crystal probed during the X-ray exposure.The current density–voltage (JV) characteristics of α-H2Pc films sandwiched between two aluminum electrodes showed ohmic behavior at low voltages and space–charge-limited conduction (SCLC) at higher voltages. For comparison, similar measurements of the current density as a function of voltage were performed on zinc phthalocyanine, ZnPc, thin films using aluminum electrodes. The JV characteristics showed ohmic behavior at low voltages followed by SCLC dominated by an exponential trap distribution at higher voltages. Consequently, in both H2Pc and ZnPc films, aluminum electrodes act as if they are ohmic contacts. The implied provision of ohmic contacts using aluminum in this case is attributed to the formation of a thin Al2O3 layer during the deposition process.  相似文献   

13.
To investigate the conduction mechanism in an organic/inorganic heterojunction, poly(1.8-diaminocarbazole) (PDACz) on a p-type silicon substrate in a sandwich configuration were contacted with Al electrodes and temperature-dependent current–voltage measurements performed in the temperature range 280–380 K. It was found that the barrier height decreased and the ideality factor increased with decreasing temperature. Temperature and bias-dependent transition regimes were observed. These anomalies are explained by further analysis of the low- and high-field regions of the current–voltage curves. The trap density Hb and the characteristic trap energy Et were found to be 1.85 × 1017 cm?3 and 25 meV, respectively. Assuming that the trapped carrier density pt is higher than free-carrier density p, it is concluded that hole transport is dominated by space-charge-limited currents.  相似文献   

14.
BaTiO3 nanoparticles prepared by wet chemical method were thermally grown onto well cleaned glass substrates under the vacuum of 2 × 10−5 Torr, using 12A4 Hind Hivac coating unit. An Al–BaTiO3–Al sandwich structure has been used for electrical conduction properties in the temperature range 303–423 K. The composition of nanoparticles and thin films were identified by EDS spectrum. The structural studies have been performed by the X-ray diffraction (XRD) technique. The X-ray analysis showed that the nano particle has a tetragonal structure and deposited films at a lower thickness amorphous in nature, whereas the crystallinity increases with increase of thickness. In the DC conduction studies, the current–voltage characteristics of the films showed ohmic conduction in the low voltage region. In the higher voltage region, a space charge limited conduction (SCLC) takes place due to the presence of the trapping level. The activation energy was estimated and the values found to decrease with increasing applied voltage. The zero field value of the activation energy is found to be 0.31 eV. The free carrier mobility, carrier density and trap density values were calculated and reported in this paper.  相似文献   

15.
The conduction mechanism of stress induced leakage current (SILC) through 2nm gate oxide is studied over a gate voltage range between 1.7V and stress voltage under constant voltage stress (CVS). The simulation results show that the SILC is formed by trap-assisted tunnelling (TAT) process which is dominated by oxide traps induced by high field stresses. Their energy levels obtained by this work are approximately 1.9eV from the oxide conduction band, and the traps are believed to be the oxygen-related donor-like defects induced by high field stresses. The dependence of the trap density on stress time and oxide electric field is also investigated.  相似文献   

16.
A gallium nitride (GaN) based Metal-Oxide-Semiconductor (MOS) capacitor was fabricated using radio frequency (RF)-sputtered tantalum oxide (Ta2O5) as the high-k gate dielectric. Electrical characteristics of this capacitor were evaluated via capacitance–voltage (CV), current–voltage (IV), and interface trap density (Dit) measurements with emphasis on the substrate temperature dependence ranging from 25 °C to 200 °C. Charge trapping and conduction mechanism in Ta2O5 were investigated. The experimental results suggested that higher substrate temperature rendered higher oxide capacitance, reduced gate leakage current, and lowered mid-gap interface trap density at the expenses of high border traps and high fixed oxide charges. The gate leakage current through Ta2O5 was found to obey the Ohm's conduction at lower gate bias and the Poole–Frenkel conduction at higher gate bias.  相似文献   

17.
The anti-clockwise bipolar resistive switching in Ag/NiO/ITO (Indium–Tin–Oxide) heterojunctional thin film assembly is investigated. A sequential voltage sweep in 0 → V max → 0 → ?V min → 0 order shows intrinsic hysteresis behaviour and resistive switching in current density (J)–voltage (V) measurements at room temperature. Switching is induced by possible rupture and recovery of the conducting filaments in NiO layer mediated by oxygen ion migration and interfacial effects at NiO/ITO junction. In the high-resistance OFF-state space charge limited current passes through the filamentary path created by oxygen ion vacancies. In OFF-state, the resistive switching behaviour is attributed to trapping and detrapping processes in shallow trap states mostly consisting of oxygen vacancies. The slope of Log I vs Log V plots, in shallow trap region of space charge limited conduction is ~2 (I ∝ V 2) followed by trap-filled and trap-free conduction. In the low-resistance ON-state, the observed electrical features are governed by the ohmic conduction.  相似文献   

18.
An admittance spectroscopy technique has been developed for the interfaces between organic monolayers and silicon. The present work involves the development of an effective equivalent circuit to represent the silicon/organic-monolayer system, and the development of a parameter extraction procedure, which yields the monolayer capacitance and the monolayer thickness, the flat-band voltage, the silicon doping density, the silicon surface potential, the interface trap density, the interface trap capture cross-section and the interface trap energy. This technique was applied to three types of silicon/organic-monolayer system.  相似文献   

19.
近白色发光的有机发光二极管   总被引:1,自引:0,他引:1  
刘祖刚  赵伟明 《光学学报》1997,17(12):742-1746
制备了以8-羟基喹啉锌Znq2为发光层,苯乙烯胺衍生物SA为空穴传导层,恶二唑衍生物PBD为载流子局限层的单层双层和三层结构的有机发光二极管。研究它们的电致发光性能如电致发光光谱,电流密度电压特性和电致发光亮度电压特性等。  相似文献   

20.
In this paper, we present the effects of ultrathin Si interfacial layer on the physical and electrical properties of GaAs MOS capacitors fabricated using RF-sputtered HfAlOx gate dielectric. It is found that HfAlOx/Si/n-GaAs stack exhibits excellent electrical properties with low frequency dispersion (∼4.8%), hysteresis voltage (0.27 V) and interface trap density (1.3 × 1012 eV−1 cm−2). The current density of 3.7 × 10−5 A/cm2 is achieved with an equivalent-oxide-thickness of 1.8 nm at VFB + 1 V for Si-passivated HfAlOx films on n-GaAs. X-ray photoelectron spectroscopy (XPS) analysis shows that the suppression of low-k interfacial layer formation is accomplished with the introduction of ultrathin Si interface control layer (ICL). Thus the introduction of thin layer of Si between HfAlOx dielectrics and GaAs substrate is an effective way to improve the interface quality such as low frequency dispersion, hysteresis voltage and leakage current. Additionally, current conduction mechanism has been studied and the dominant conduction mechanisms are found to be Schottky emission at low to medium electric fields and Poole-Frenkel at high fields and high temperatures under substrate injection. In case of gate injection, the main current conduction at low field is found to be the Schottky emission at high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号