首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Ag(I)-promoted oxidative meso-meso coupling reaction of 5,15-diaryl Zn(II)-porphyrin was serendipitously found in the course of our synthetic approaches towards photosynthetic reaction centers. Based on this reaction, a variety of directly linked and fused porphyrin arrays have been synthesized, including linear meso-meso-linked porphyrin arrays, windmill- and grid-shaped porphyrin arrays, meso-beta singly linked diporphyrins, beta-beta linked diporphyrins, meso-beta doubly linked (fused) diporphyrins and oligoporphyrins, meso-meso beta-beta doubly linked (fused) diporphyrins, and meso-meso beta-beta-beta-beta triply linked (fused) diporphyrins. The meso-meso coupling reaction of 5,15-diaryl Zn(II)-porphyrins is advantageous considering its high regioselectivity as well as its ease of extension to large porphyrin arrays as is demonstrated by the synthesis of a discrete meso-meso-linked 128-mer and poly(5,15-porphyrinylene). Finally, the oxidation of end-phenyl capped meso-meso-linked zinc porphyrins with DDQ-Sc(OTf)(3) gave pi-conjugated flat porphyrin tapes. To the best of our knowledge, the meso-meso linked 128-mer is the longest man-made discrete molecule, and the porphyrin tape 12-mer is the most extensively conjugated porphyrin array, as evinced by the lowest electronic band peak at 3500 cm(-1).  相似文献   

2.
By using the Pariser-Parr-Pople (PPP) theory, the second hyperpolarizabilities (gamma) have been calculated for various pi-conjugated porphyrin arrays including "porphyrin tapes": the meso-beta doubly linked porphyrin array Dn and the meso-meso, beta-beta, beta-beta triply linked array Tn. The validity of the PPP theory is checked via a comparison with both the ab initio Hartree-Fock and the B3LYP theories in the case of porphyrin monomers and dimers. It is found that Dn and especially Tn exhibit much more remarkable evolution of gamma/n along with an increasing number of porphyrin units n compared with the butadiyne-bridged array, Yn. As a result, the static third-order susceptibilities chi((3)) of Dn and Tn are expected to be 1 and 3 orders of magnitude larger than that of Yn in the limit n --> infinity, and these advantages of porphyrin tapes become more prominent by taking into account geometrical relaxations of porphyrin units in the arrays. The structure-property relationship in various conjugated polymers including porphyrin arrays is interpreted on the basis of the scaling behaviors of chi((1)) and chi((3)) with the effective conjugation length (ECL) as well as the reciprocal HOMO-LUMO energy gap (1/E(g)). In particular, from the master plot of chi((3)) (and even chi((1))) versus 1/E(g), the pi-conjugation of Tn is noted to indeed be exceptional, because its large susceptibilities cannot be expected from the scaling behavior of ordinary one-dimensional conjugated systems. We also point out that the theory of scaling relationship, chi((3)) approximately 1/E(g)(x)(), is significantly improved by taking into account electron-electron interactions based on the comparison with experiments.  相似文献   

3.
The excited state dynamics of Zn2+, Fe3+, and Mn3+ meso-tetra(sulfonatophenyl) porphyrin complexes were investigated with a Z-scan technique at 532 nm using 70 ps and 120 fs single pulses and 200 ns pulse trains of a Q-switched and mode locked laser. We determined the characteristic interconversion and intersystem crossing times, quantum yields of the excited S1 state, and S1 --> Sn and T1 --> Tn transition cross-sections. The ground state cross-sections were obtained using UV-vis absorption spectroscopy, and a five-energy-level diagram was used to yield the photophysical parameters mentioned previously.  相似文献   

4.
The molecular design of directly meso-meso-linked porphyrin arrays as a new model of light-harvesting antenna as well as a molecular photonic wire was envisaged to bring the porphyrin units closer for rapid energy transfer. For this purpose, zinc(II) 5,15-bis(3,5-bis(octyloxy)phenyl)porphyrin (Z1) and its directly meso-meso-linked porphyrin arrays up to Z128 (Zn, n represents the number of porphyrins) were synthesized. The absorption spectra of these porphyrin arrays change in a systematic manner with an increase in the number of porphyrins; the high-energy Soret bands remain at nearly the same wavelength (413-414 nm), while the low-energy exciton split Soret bands are gradually red-shifted, resulting in a progressive increase in the exciton splitting energy. The exciton splitting is nicely correlated with the values of cos[pi/(N + 1)] according to Kasha's exciton coupling theory, providing a value of 4250 cm(-1) for the exciton coupling energy in the S(2) state. The increasing red-shifts for the Q-bands are rather modest. The fluorescence excitation anisotropy spectra of the porphyrin arrays show that the photoexcitation of the high-energy Soret bands exhibits a large angle difference between absorption and emission dipoles in contrast with the photoexcitation of the low-energy exciton split Soret and Q-bands. This result indicates that the high-energy Soret bands are characteristic of the summation of the individual monomeric transitions with its overall dipole moment deviated from the array chain direction, while the low-energy Soret bands result from the exciton splitting between the monomeric transition dipoles in line with the array chain direction. From the fluorescence quantum yields and fluorescence lifetime measurements, the radiative coherent length was estimated to be 6-8 porphyrin units in the porphyrin arrays. Ultrafast fluorescence decay measurements show that the S(2) --> S(1) internal conversion process occurs in less than 1 ps in the porphyrin arrays due to the existence of exciton split band as a ladder-type deactivation channel, while this process is relatively slow in Z1 (approximately 1.6 ps). The rate of this process seems to follow the energy gap law, which is mainly determined by the energy gap between the two Soret bands of the porphyrin arrays.  相似文献   

5.
We present the synthesis and characterization of new light-harvesting arrays containing two, four, or eight perylene-monoimide accessory pigments attached to a zinc porphyrin. Each perylene is substituted with one or three 4-tert-butylphenoxy substituents. A 4,3'- or 4,2'-diarylethyne linker joins the perylene N-imide position and the porphyrin meso-position, affording divergent or convergent architectures, respectively. The architectures are designed to provide high solubility in organic media and facile perylene-to-porphyrin energy transfer, while avoiding charge-transfer quenching of the excited porphyrin product. For the array containing four perylenes per porphyrin in both nonpolar (toluene) and polar (benzonitrile) media and for the array containing eight perylenes per porphyrin in toluene, the photoexcited perylene-monoimide dye (PMI) decays rapidly ( approximately 3.5 ps) and predominantly (>or=90%) by energy transfer to the zinc porphyrin to form the excited zinc porphyrin (Zn), which has excited-state characteristics (lifetime, fluorescence yield) comparable (within approximately 10%) to those of the isolated chromophore. For the array containing eight perylenes in benzonitrile, PMI decays approximately 80% by energy transfer (forming Zn) and approximately 20% by hole transfer (forming PMI- Zn+); Zn subsequently decays approximately 20% by electron transfer (also forming PMI- Zn+) and approximately 80% by the normal routes open to the porphyrin monomer (intersystem crossing, internal conversion, fluorescence). In addition to rapid and efficient perylene-to-porphyrin energy transfer, the broad blue-green to yellow absorption of the perylene dyes complements the blue absorption of the porphyrin, resulting in excellent light harvesting across a significant spectral region. Collectively, the work described herein identifies multiperylene-porphyrin arrays that exhibit suitable photochemical properties for use as motifs in larger light-harvesting systems.  相似文献   

6.
A belt-shaped hexagonal cyclic porphyrin array 2 that comprises of six meso-meso, beta-beta, beta-beta triply linked diporphyrins 3 bridged by 1,3-phenylene spacers is prepared by oxidation from cyclic dodecameric array 1 consisting of six meso-meso directly linked diporphyrins 4 with DDQ and Sc(OTf)3. The absorption spectrum of 2 is similar to that of the constituent subunit 3 but shows a slight red-shift for the Q-bands in near-infrared (NIR) region, indicating the exciton coupling between the neighboring diporphyrin chromophores. Observed total exciton coupling energies in the absorption spectra were largely matched with the calculated values based on point-dipole exciton coupling approximation. It was found that the experimental exciton coupling strength (292 cm(-1)) of the Q-band in 2 is slightly larger than the calculated one (99 cm(-1)), indicating that the electronic communications are enhanced through 1,3-phenylene linkers in hexameric macromolecule. A rate of the excitation energy hopping (EEH) that occurs in 2 at the lowest excited singlet state in the near-infrared region has been determined to be (1.8 ps)(-1) on the basis of the pump-power dependent femtosecond transient absorption (TA) and the transient absorption anisotropy (TAA) decay measurements. The 2 times faster EEH rate of 2 than that of 1 (4.0 ps)(-1) mainly comes from involving through-bond energy transfer among diporphyrin subunits via 1,3-phenylene bridges as well as F?rster-type through-space EEH processes. STM measurement of 2 in the Cu(100) surface revealed that it takes several discrete conformations with respect to the relative orientation of neighboring diporphyrins. Collectively, an effective EEH in the NIR region is realized in 2 due largely to the intensified oscillator strength in the S(1) state (Q-band) and the close proximity held by 1,3-phenylene spacers.  相似文献   

7.
Density functional theory (DFT) has been applied to study the effect of fluorination on the electronic and excited states of fused zinc oligoporphyrins in the search for new functionalizing materials, such as n-type organic semiconductors. The excitation spectra of meso-tetrafluoro, beta-octafluoro, and perfluoro zinc porphyrins, and their triply meso-meso-, beta-beta, and beta-beta-linked fluorinated zinc oligoporphyrins were systematically examined using the time-dependent DFT method. The effect of the perfluorination on the zinc porphyrin (ZnP) causes the maximum 1.12 eV and 1.42 eV drops for the highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO, respectively) levels, respectively. The electronic and excitation features of the fluorinated ZnPs are almost similar to the unfluorinated ones. However, the large antibonding contribution of the meso-fluorines disturbs the stabilization of the HOMO, resulting in a more effective reduction of both the HOMO-LUMO gaps and the lowest Q excitation energies with the increasing number of porphyrins compared to the unfluorination and the other types of fluorinations. It is found that the infinite fused fluorinated ZnP tapes with narrow gap (approximately = 0.1 eV-0.2 eV) as predicted by using the periodic-DFT level are slightly inferior to the near-zero gap semimetallic unfluorinated ZnP tape as a conducting molecular wire. The combination of the condensation and the meso- and/or beta-fluorination of ZnP can finely tune the LUMO level to the Fermi level of the electrodes for fabrication of n-type conducting materials. The fused fluoro-oligoporphyrins may then become new n-type organic semiconductors, provided they are well crystallized with a high electron mobility, such as the recently synthesized perfluoropentacene.  相似文献   

8.
Rhenium(bipyridine)(tricarbonyl)(picoline) units have been linked covalently to tetraphenylmetalloporphyrins of magnesium and zinc via an amide bond between the bipyridine and one phenyl substituent of the porphyrin. The resulting complexes, abbreviated as [Re(CO)(3)(Pic)Bpy-MgTPP][OTf] and [Re(CO)(3)(Pic)Bpy-ZnTPP][OTf], exhibit no signs of electronic interaction between the Re(CO)(3)(bpy) units and the metalloporphyrin units in their ground states. However, emission spectroscopy reveals solvent-dependent quenching of porphyrin emission on irradiation into the long-wavelength absorption bands localized on the porphyrin. The characteristics of the excited states have been probed by picosecond time-resolved absorption (TRVIS) spectroscopy and time-resolved infrared (TRIR) spectroscopy in nitrile solvents. The presence of the charge-separated state involving electron transfer from MgTPP or ZnTPP to Re(bpy) is signaled in the TRIR spectra by a low-frequency shift in the nu(CO) bands of the Re(CO)(3) moiety similar to that observed by spectroelectrochemical reduction. Long-wavelength excitation of [Re(CO)(3)(Pic)Bpy-MTPP][OTf] results in characteristic TRVIS spectra of the S(1) state of the porphyrin that decay with a time constant of 17 ps (M = Mg) or 24 ps (M = Zn). The IR bands of the CS state appear on a time scale of less than 1 ps (Mg) or ca. 5 ps (Zn) and decay giving way to a vibrationally excited (i.e., hot) ground state via back electron transfer. The IR bands of the precursors recover with a time constant of 35 ps (Mg) or 55 ps (Zn). The short lifetimes of the charge-transfer states carry implications for the mechanism of reaction in the presence of triethylamine.  相似文献   

9.
Synthesis, structural characteristics, and optical and electrochemical properties of various covalently-linked porphyrin arrays are described. First, aromatic-spacer bridged diporphyrins were prepared in which the diporphyrin geometries were conformationally-restricted and thus suitable for detailed studies on the exciton coupling and the intramolecular energy and/or electron transfer reactions. Secondly, the Ag(I)-salt oxidation of 5,15-diaryl Zn(II) porphyrins provided mesomeso-linked Zn(II)-diporphyrins. This reaction is advantageous in light of its high regioselectivity and easy extension to longer porphyrin arrays. The doubling reaction was repeated up to the synthesis of a discrete 128-mer, which is, to the best of our knowledge, the longest man-made molecule. Finally, the oxidation of mesomeso-linked Zn(II) porphyrin arrays with a combination of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and Sc(III)(OTf)3 produced fused porphyrin arrays with full π-conjugation, which displayed extremely small HOMO–LUMO gaps that reach into the infrared region.  相似文献   

10.
The photophysical properties of L-lysine-based polypeptides bearing porphyrin pendants were investigated. The intramolecular exciton-exciton annihilation resulting from the exciton migration among the porphyrin units deactivates the singlet excited state efficiently. It was revealed that the rate of the exciton migration depends on the polymerization degree.  相似文献   

11.
Electronically coupled porphyrin arrays are suitable for artificial light harvesting antenna in light of a large absorption cross-section and fast excitation energy transfer (EET). Along this line, an artificial energy transfer model system has been synthesized, comprising of an energy donating meso-meso linked Zn(II) porphyrin array and an energy accepting 5,15-bisphenylethynylated Zn(II) porphyrin linked via a 1,4-phenylene spacer. This includes an increasing number of porphyrins in the meso-meso linked Zn(II) porphyrin array, 1, 2, 3, 6, 12, and 24 (Z1A, Z2A, Z3A, Z6A, Z12A, and Z24A). The intramolecular singlet-singlet EET processes have been examined by means of the steady-state and time-resolved spectroscopic techniques. The steady-state fluorescence comes only from the acceptor moiety in Z1A-Z12A, indicating nearly the quantitative EET. In Z24A that has a molecular length of ca. 217 A, the fluorescence comes largely from the acceptor moiety but partly from the long donor array, indicating that the intramolecular EET is not quantitative. The transient absorption spectroscopy has provided the EET rates in real time scale: (2.5 ps)(-1) for Z1A, (3.3 ps)(-1) for Z2A, (5.5 ps)(-1) for Z3A, (21 ps)(-1) for Z6A, (63 ps)(-1) for Z12A, and (108 ps)(-1) for Z24A. These results have been well explained by a revised F?rster equation (Sumi formula), which takes into account an exciton extending coherently over several porphyrin pigments in the donor array, whose length is not much shorter than the average donor-acceptor distance. Advantages of such strongly coupled porphyrin arrays in light harvesting and transmission are emphasized in terms of fast EET and a large absorption cross-section for incident light.  相似文献   

12.
Abstract—Picosecond absorption spectroscopy was used to determine the intramolecular energy relaxation processes occurring in Ni(II). Pd(II), Pt(II), and Zn(II) protoporphyrin IX dimethyl ester. Picosecond data on the rate of ground state repopulation and the kinetics of a transient intermediate made it possible to determine the lifetimes of the excited singlet state of Ni, Pd, and Zn porphyrins as 10±2ps, 19±3ps, and 2.6±0.5 ps, respectively, and<8 ps for Pt porphyrin. On the basis of these data. the nonfluorescent and nonphosphorescent property of Ni porphyrin can be interpreted in terms of internal conversion to a lower lying singlet d-d level which is not the case for the strongly phosphorescent Pd and Pt porphyrins.  相似文献   

13.
Femtosecond time-resolved transient absorption studies have been performed to investigate the photoinduced energy and electron-transfer processes in Zn(II )porphyrin–Zn(II )chlorin–fullerene triad in which energy and oxidation potential gradients are directed along the donor–acceptor-linked arrays. Fast energy transfer (≈450 fs) from photoexcited Zn(II )porphyrin to Zn(II )chlorin was observed upon selective photoexcitation of Zn(II )porphyrin unit in the triad. In a nonpolar solvent such as toluene, the energy transfer from the excited singlet state of Zn(II )chlorin to fullerene occurs and is followed by the formation of an intermediate state with a time constant of nanoseconds, which was attributed to the intramolecular exciplex between Zn(II )chlorin and fullerene. In benzonitrile, on the other hand, the photoexcitation of the triad results in the fast electron transfer (<1 ps) from photoexcited Zn(II )chlorin to fullerene. The generated charge-separated species recombine with a time constant of ≈12 ps. The relatively fast charge separation and charge recombination rates imply that the strong electronic coupling between Zn(II )chlorin and fullerene moieties is probably induced by the folded conformation between Zn(II )chlorin and fullerene moieties which enhances direct through-space interaction between the proximately contacted π systems.  相似文献   

14.
The electrochemical and photophysical properties of molecular architectures consisting of oligomeric meso,meso-linked oligoporphyrin rods linked at both extremities to methanofullerene moieties are presented in comparison to those of model systems. Cyclic voltammetry data evidence the presence of a strong intramolecular electronic coupling along the porphyrin oligomers that varies slightly with their length. This interaction affects the redox potentials of both fullerene and porphyrin moieties. The electronic coupling between the two chromophores is confirmed by comparing the redox potentials of porphyrin arrays before and after attachment of the carbon sphere. Electronic absorption, fluorescence, and phosphorescence spectra of the porphyrin oligomers in toluene are reported, which provide the energy of the lowest singlet and triplet electronic excited states. In the fullerene-porphyrin conjugates, ground-state charge-transfer (CT) interactions are evidenced by low-energy absorption features above 750 nm. These systems also exhibit near-infrared (NIR) CT luminescence in toluene with lifetimes shorter than 1000 ps. On increasing the solvent polarity (from toluene to Et2O and THF), CT emissions become progressively weaker, red-shifted, and shorter lived, which reflects the energy-gap law and Marcus inverted region effects. Luminescence is not detected in benzonitrile. Picosecond transient absorption spectroscopy of the porphyrin-fullerene conjugates allows detection of the porphyrin cation as a clear fingerprint for electron transfer. The rate of charge recombination is in agreement with CT luminescence lifetimes, which confirms the occurrence of NIR radiative back-electron transfer.  相似文献   

15.
Goro Mori 《Tetrahedron》2007,63(33):7916-7925
The synthesis and photophysical properties of three-dimensionally arranged porphyrin arrays with through-space electronic communication are reported. 1,3,5-Trioxamethylphenylene bridged Zn(II) porphyrin trimer 3 was coupled by Ag(I)-promoted oxidative coupling reaction to give porphyrin cage 5 comprising three meso-meso linked diporphyrins, which was then transformed by oxidation with DDQ and Sc(OTf)3 into porphyrin cage 7 comprising three fused diporphyrins. Intramolecular meso-meso coupling reaction was applied to porphyrin pentamer 11 to provide porphyrin array 12 consisting of a porphyrin core flanked by two meso-meso linked diporphyrins. Further oxidation of 12 with DDQ and Sc(OTf)3 afforded triply stacked porphyrin array 13 that is comprised of a porphyrin core flanked by two porphyrin tapes. UV-vis-NIR absorption and fluorescence spectra of 5, 7, 12, and 13 showed their distorted conformations and electronic interaction within the stacked porphyrin arrays.  相似文献   

16.
Geometrical structures of chain porphyrin arrays adsorbed on Cu(100) are observed by STM: a bridge-like bent structure for meso-meso singly linked orthogonal hexamer, whereas a rigid planar and one-dimensionally stacked structure for meso-meso, beta-beta, beta-beta triply-linked hexamer.  相似文献   

17.
Substituent effect on the lifetimes of a series of substituted naphthalenes (Np) in the higher triplet excited state (Tn) was studied with transient absorption measurements using the two-color two-laser flash photolysis technique. Lifetimes of Np(Tn) in cyclohexane solution were determined from the triplet energy transfer quenching by carbon tetrachloride to be 0.98-63 ps. The different lifetimes of Np(Tn) were explained by the energy gap law for the internal conversion from Np(Tn) to Np(T1), indicating that Np(Tn) quenched by carbon tetrachloride is assigned to Np(T2) with the longest lifetime among Np(Tn). The lifetime of Np(Tn) was correlative with the Hammett sigmap constant. Electronic characters of substituents showed a more significant influence on the energy of the T2 state than that of the T1 state.  相似文献   

18.
The photophysical, electrochemical, and self-assembly properties of a novel triply fused Zn(II)-porphyrin trimer were investigated and compared to the properties of a triply fused porphyrin dimer and the analogous monomer. The trimer exhibited significantly red-shifted absorption bands relative to the corresponding monomer and dimer. Electrochemical investigations indicated a clear trend in redox properties amongst the three porphyrin structures, with the lowest oxidation potential and the lowest HOMO-LUMO gap exhibited by the triply fused trimer. This electrochemical behavior is attributed to the extensive pi-electron delocalization in the trimeric structure relative to the monomer and dimer. Additionally, it was found that the trimer forms extremely strong and nearly irreversible supramolecular interactions with single-walled carbon nanotubes (SWNTs), resulting in stable solutions of porphyrin-nanotube complexes in THF. Formation of these complexes required the addition of trifluoroacetic acid (TFA) to the solvent. This allowed the oligomers to make close contact with the nanotubes, enabling the formation of stable supramolecular assemblies. Atomic force microscopy (AFM) was used to observe the supramolecular porphyrin-nanotube complexes and revealed that the porphyrin trimer formed a uniform coating on the SWNTs. Height profiles indicated that nanotube bundles could be exfoliated into either individual tubes or very small bundles by exposure to the porphyrin trimer during sonication.  相似文献   

19.
Static and time-resolved optical measurements are reported for three cyclic hexameric porphyrin arrays and their self-assembled complexes with guest chromophores. The hexameric hosts contain zinc porphyrins and 0, 1, or 2 free base (Fb) porphyrins (denoted Zn(6), Zn(5)Fb, or Zn(4)Fb(2), respectively). The guest is a core-modified (O replacing one of the four N atoms) dipyridyl-substituted Fb porphyrin (DPFbO) that coordinates to zinc porphyrins of a host via pyridyl-zinc dative bonding. Each architecture is designed to have a gradient of excited-state energies for excitation funneling among the weakly coupled constituents of the host to the guest. Energy transfer to the lowest-energy chromophore(s) (coordinated zinc porphyrins or Fb porphyrins) within a hexameric host occurs primarily via a through-bond (TB) mechanism, is rapid ( approximately 40 ps), and is essentially quantitative (>or=98%). Energy transfer from a pyridyl-coordinated zinc porphyrin of the host to the guest in the Zn(6)*DPFbO complex has a yield of approximately 75%, a rate constant of approximately (0.7 ns)(-1), and significant F?rster through-space (TS) character. In the case of Zn(5)Fb*DPFbO, which has an additional TS route via the Fb porphyrin with a rate constant of approximately (20 ns)(-1), the yield of energy transfer to the guest is somewhat lower ( approximately 50%) than that for Zn(6)*DPFbO. Complex Zn(4)Fb(2)*DPFbO has an identical TS pathway via the Fb porphyrin plus an additional TS pathway involving the second Fb porphyrin (closer to the guest) with a rate constant of approximately (0.5 ns)(-1). This complex exhibits an energy-transfer yield to the guest that is significantly enhanced over that for Zn(5)Fb*DPFbO and comparable to that for Zn(6)*DPFbO. Collectively, the results for the various arrays suggest designs for similar host-guest complexes that are expected to exhibit much more efficient light harvesting and excitation trapping at the central guest chromophore.  相似文献   

20.
The photophysical characterization of the two tautomers (1e and 1i) of 5,10,15,20-tetraphenyl N-confused free-base porphyrin, as well as the tautomer-locked 2-methyl 5,10,15,20-tetraphenyl N-confused free-base porphyrin, was carried out using a combination of steady state and time-resolved optical techniques. N-Confused porphyrins, alternatively called 2-aza-21-carba-porphyrins or inverted porphyrins, are of great interest for their potential as building blocks in assemblies designed for artificial photosynthesis, and understanding their excited-state properties is paramount to future studies in multicomponent arrays. Femtosecond resolved transient absorption experiments reveal spectra that are similar to those of tetraphenylporphyrin (H2TPP) with either Soret or Q-band excitation, with an extinction coefficient for the major absorbing band of 1e that was about a factor of 5 larger than that of H2TPP. The lifetime of the S1 state was determined at a variety of absorption wavelengths for each compound and was found to be consistent with time-resolved fluorescence experiments. These experiments reveal that the externally protonated tautomer (1e) is longer lived (tau = 1.84 ns) than the internally protonated form (1i, tau = 1.47 ns) by approximately 369 ps and that the N-methyl N-confused porphyrin was shorter lived than the tautomeric forms by approximately 317 ps (DMAc) and approximately 396 ps (benzene). Steady-state fluorescence experiments on tautomers 1e and 1i and the N-methyl analogues corroborate these results, with fluorescence quantum yields (Phi(Fl)) of 0.046 (1e, DMAc) and 0.023 (1i, benzene), and 0.025 (DMAc) and 0.018 (benzene) for the N-methyl N-confused porphyrin. The lifetime and quantum yield data was interpreted in terms of structural changes that influence the rate of internal conversion. The absorption and transient absorption spectra of these porphyrins were also examined in the context of DFT calculations at the B3LYP/6-31G(d)//B3LYP/3-21G(d) level of theory and compared to the spectra/electronic structure of H2TPP and tetraphenyl chlorin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号