首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a novel method of detecting the glass --> liquid transition at high pressures, which comprises measuring the relative volume change incurred upon heating glassy samples into the liquid state. We show data on glycerol in the pressure range 0.050-1.00 GPa to demonstrate the viability of the method. The reversible glass --> liquid transition is observed by means of a kink in the relative volume change on heating the sample isobarically, which is attributed to the glass --> liquid transition temperature Tg. This kink can only be observed in the second and subsequent heating cycles since it is superposed by a compaction in the first heating cycle. The isobaric thermal expansivity beta, which is closely related to the first derivative of this curve, shows the features expected for a glass --> liquid transition, including a sharp rise of beta(glass) in a narrow temperature interval to beta(viscous liquid) and an accompanying overshoot effect. Both Tg and the size of the overshoot effect vary in accordance with theory upon changing the ratio of cooling to heating rates. From the shape of this curve the onset, inflection, overshoot peak, and endpoint of the glass --> liquid transition can be extracted, which can be employed to calculate the reduced glass transition width as a measure for the fragility of the liquid. Comparison with literature data allows quantifying the accuracy of the liquid's thermal expansivity beta to be at least +/-10%, while the error in beta is significantly larger for the expansivity of the glassy state. The reproducibility of the glass --> liquid transition temperature Tg is better than +/-2 K. Our glycerol data confirms literature studies showing a nonlinear increase of Tg with increasing pressure (approximately 35 K/GPa on average), which is accompanied by an increase in fragility.  相似文献   

2.
Water sorption by four amorphous acrylic and methacrylic poly(zwitterions) bearing ammonium sulfopropylbetaine side groups () was studied at a constant temperature of 23°C and over a broad range of water activity (0.14-0.90). Whatever the physical state of the hydrated polymer, glassy or viscoelastic, water diffusion is Fickian (average diffusion coefficient D?s in the range 2-16 × 10?8 cm2 s?1), and the sorption isotherms may be quantitatively analyzed according to the Guggenheim-Anderson-De Boer amended BET equation for multilayer sorption processes. The number of sitebound water molecules per monomeric unit is in the range 1.5–2.0, and apparently there is no great energy difference between direct site binding and indirect binding in the successive solvation layers. The polymer-water interaction parameter (?0.6 < χ Flory < 0.6) is an increasing function of the water content of the hydrated poly(zwitterions) over the whole composition range (water volume fraction < 0.5), without any clear transition from the glassy to the viscoelastic state. Clustering of water molecules (Zimm-Lundberg theory) is never observed, even at high water content. Because of the charged structure of their dipolar units, the poly(zwitterions) show a water sorption process similar to that of the corresponding poly(electrolytes) of the tetra-alkylammonium sulfonate type. © 1992 John Wiley & Sons, Inc.  相似文献   

3.
Blends of poly(ether ketone) (PEK) with poly(terephthaloyl-imide) (a thermoplasticpolyimide, TPI) were studied by temperature-modulated DSC (TMDSC) and X-ray diffraction. Samples were prepared by compression moulding of the premixed materials at 400°C and quenched to prevent crystallisation.The amorphous blends showed a single glass transition but with a jump in the temperature value at 60 mass% of PEK, indicating limited miscibility of the system at both sides of the composition series in the quenched, glassy state. Two cold crystallisation peaks over the concentration range 30 to 70 mass% of PEK were observed, but only one for all other compositions. A single melting peak was observed in all systems.Blends crystallised from the glassy state showed eutectic behaviour with the presence of the crystals of both pure components. This is the first reported case of two semicrystalline polymers exhibiting eutectic co-crystallisation. The formation of eutectic crystals is proof of full miscibility of the two polymers in their liquid state, i.e. at a temperature of 400°C and above. Blends cooled from the melt at a cooling rate of 2 K min–1 showed a single glass transition and an extended melting range.Crystallisation during a second melting run generally starts at a different temperature then during the first run indicating chemical changes occurred in the molten state. This change was also verified by an exothermic peak above the melting temperature using TMDSC.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

4.
A two-stage transition upon crossing the glass transition of polystyrene with increasing temperature was precisely determined and interpreted by using solid-state nuclear magnetic resonance(SSNMR), ~1H-~1H dipolar couplings based double quantum-filtered(DQF) and dipolar filter(DF) experiments and ~(13)C chemical shift anisotropy(CSA) based centerband-only detection of exchange(CODEX) experiment are used to fully characterize the time scale of molecular motions during the glass transition. While differential scanning calorimetry(DSC) and CODEX experiment predicted the first stage of glass transiton, DQF and DF experiments provided the evidence for the second stage transition during which the time scale of molecular motions changed from very slow(t ms) to very fast(t μs). The first stage of glass transition begins with the occurrence of remarkable slow re-orientation motions of the polymer backbone segments and ends when the degree of slow motion reaches maximum. The onset and endpoint of the conventional calorimetric glass transition of polystyrene can be quantitatively determined at the molecular level by SSNMR. In the second stage, a subsequent dramatic transition associated with the melting of the glassy components was observed. In this stage liquid-like NMR signals appeared and rapidly increased in intensity after a characteristic temperature T_f(~1.1T_g). The signals associated with the glassy components completely disappeared at another characteristic temperature T_c(~1.2T_g).  相似文献   

5.
The equilibrium adsorption behavior of two n-alkyl-beta-D-glucosides (octyl (C8G1) and decyl (C10G1)) and four n-alkyl-beta-D-maltosides (octyl (C8G2), decyl (C10G2), dodecyl (C12G2), and tetradecyl (C14G2)) from aqueous solution on a titania surface, as measured by ellipsometry, has been investigated. The main focus has been on the effect of changes in the alkyl chain length and headgroup polymerization, but a comparison with their adsorption on the silica/water and air/water interfaces is also presented. Some comparison with the corresponding adsorption of ethylene oxide surfactants, in particular C10E6 and C12E6, is given as well. For all alkyl polyglucosides, the maximum adsorbed amount on titania is reached slightly below the critical micelle concentration (cmc), where it levels off to a plateau and the amount adsorbed corresponds roughly to a bilayer. However, there is no evidence that this is the actual conformation of the surfactant assemblies on the surface, but the surfactants could also be arranged in a micellar network. On hydrophilic silica, the adsorbed amount is a magnitude lower than on titania, corresponding roughly to a layer of surfactants lying flat on the surface. A change in the alkyl chain length does not result in any change in the plateau molar adsorbed amount at equilibrium; however, the isotherm slope for the alkyl maltosides increases with increasing chain length. Headgroup polymerization on the other hand affects the adsorbed amount. The alkyl glucosides start adsorbing at lower bulk concentrations than the maltosides and equilibrate at higher adsorbed amounts above the cmc. When compared with the ethylene oxide (EO) surfactants, it is confirmed that the EO surfactants hardly adsorb on titania, since the measured changes in the ellipsometric angles are within the noise level. They do, however, adsorb strongly on silica.  相似文献   

6.
Novel protein-based hydrogels have been prepared by blending gelatin (G) with amorphous Bombyx mori silk fibroin (SF) and subsequently promoting the formation of beta-sheet crystals in SF upon exposure to methanol or methanol/water solutions. Differential scanning calorimetry of the resultant hydrogels confirms the presence and thermoreversibility of the G helix-coil transition between ambient and body temperature at high G concentrations. At low G concentrations, this transition is shifted to higher temperatures and becomes progressively less pronounced. Complementary dynamic rheological measurements reveal solid-liquid cross-over at the G helix-coil transition temperature typically between 30 and 36 degrees C in blends prior to the formation of beta-sheet crystals. Introducing the beta-sheet conformation in SF stabilizes the hydrogel network and extends the solid-like behavior of the hydrogels to elevated temperatures beyond body temperature with as little as 10 wt.-% SF. The temperature-dependent elastic modulus across the G helix-coil transition is reversible, indicating that the conformational change in G can be used in stabilized G/SF hydrogels to induce thermally triggered encapsulant release.  相似文献   

7.
Theories and models are presented for gas sorption in polymers above and below the glass transition temperature. With the exception of predictive theories that do not represent the data well, the models are fit to data for the carbon dioxide/silicone rubber and carbon dioxide/polycarbonate systems for the purposes of comparison. During the past decade, a number of new models and theories have been proposed specifically for gas sorption in glassy polymers. Each new model attempts to incorporate aspects of the gas sorption process that are unique to polymers below the glass transition temperature. This review discusses these recent advances, the assumptions used in their development and their advantages and disadvantages.  相似文献   

8.
Summary: We explored the diffusion mechanisms in a series of liquid/glassy polymer interphases. The diffusion experiments were performed in a unique way: the temperature range studied encompassed the glass transition temperature (Tg) of the glassy matrices. We observed that the diffusion behavior of the liquid polymer was remarkably continuous when passing through the matrix Tg, and that the diffusion modes at the liquid/glassy interphases were very similar to those observed in liquid/liquid polymer diffusion.

Diffusion profiles of liquid PS in glassy PPO obtained by confocal Raman spectroscopy. The sample was held at 160 °C for the times indicated in the plot.  相似文献   


9.
Experimental data on gas sorption and polymer swelling in glassy polymer—gas systems at elevated pressures are presented for CO2 with polycarbonate, poly(methyl methacrylate), and polystyrene over a range of temperatures from 33 to 65°C and pressures up to 100 atm. The swelling and sorption behavior were found to depend on the occurrence of a glass transition for the polymer induced by the sorption of CO2. Two distinct types of swelling and sorption isotherms were measured. One isotherm is characterized by swelling and sorption that reach limiting values at elevated pressures. The other isotherm is characterized by swelling and sorption that continue to increase with pressure and a pressure effect on swelling that is somewhat greater than the effect of pressure on sorption. Glass transition pressures estimated from the experimental results for polystyrene with CO2 are used to obtain the relationship between CO2 solubility and the glass transition temperature for the polymer. This relationship is in very good agreement with a theoretical corresponding-states correlation for glass transition temperatures of polystyrene-liquid diluent mixtures.  相似文献   

10.
Dilation of polysulfone (PSUL) and crystalline poly(ethylene terephthalate) (PET) films accompanying sorption of carbon dioxide is measured by a cathetometer under high pressure up to 50 atm over the temperature range of 35–65°C. Sorptive dilation isotherms of PSUL are concave and convex to the pressure and concentration axes, respectively, and both isotherms exhibit hysteresis. Each dilation isotherm plotted versus pressure and concentration for the CO2-PET system shows an inflection point, i.e., a glass transition point, at which the isotherm changes from a nonlinear curve to a straight line. Dilation isotherms of PET below the glass transition point are similar to those of the CO2-PSUL system, whereas the isotherms above the glass transition point are linear and exhibit no hysteresis. Partial molar volumes of CO2 in these polymers are determined from data of sorptive dilation. On the basis of the extended dual-mode sorption model and the current data, primitive equations for gas-sorptive dilation of glassy polymers are proposed.  相似文献   

11.
Crystal structure and sorption properties of silicalites, a new microporous crystalline silica, have been studied. The low temperature phase transition of silicalite into α-cristobalite is detected as being promoted by alkali cations. Removal of alkali cations by acid treatment results in higher thermo-stability of the crystals (to over 1150°C) without any change in maximum sorption capacity for n-hexane. Hydroxyl modes are found to be similar between silicalite and isostructural zeolite and were spectroscopically identified (the band at 3680 cm−1) as hydrolyzed sodium-silicate bonds forming on acid treatment and washing the precursor crystals with water.  相似文献   

12.
The calorimetric glass transition behaviour in the amorphous forms of water is reviewed: for a heating rate of 30 K min−1 the onset temperature, or Tg, of the glass transition is 136±1 K for hyperquenched glassy water and annealed vapour-deposited amorphous solid water, and 129±1 K for the low-density form of pressure-amorphized hexagonal ice. The increase in heat capacity in the glass transition region is between 1.6–2 J K mol for the three amorphous forms. Annealing of the samples a few degrees below Tg or heating several degrees above the glass transition region has no influence on the onset temperatures at 136 K and 129 K respectively, which is contrary to ‘normal’ behaviour. The results are discussed with respect to the ‘structure’ of the three amorphous forms of water below the glass transition region and a “gel-like” state of water above Tg.  相似文献   

13.
Thermodynamic connection between liquid and glass is not obvious for poor glass formers. In this study, microscopic molecular diffusivity and macroscopic fluidity of vapor-deposited thin films of n-hexane were investigated using TOF-SIMS to elucidate the mechanism of the glass-liquid transition. The C 6H 14 film deposited at 15 K is characterized by a porous structure, as inferred from the intermixing with adsorbed C 6D 14 and D 2O molecules, as well as the formation of D 2O nanoclusters on the surface. The hexane molecules are reoriented at temperatures higher than 60-70 K, resulting in smoothing of the surface and densification of the film. Self-diffusion of the hexane molecules commences at 110 K; then, the film dewets the Ni(111) substrate after some aging time. Results indicate that ultraviscous liquid formed at the glass transition temperature of 110 K transforms into fluidized liquid immediately before crystallization. The D 2O molecules adsorbed onto the surface play a role as a surfactant, as evidenced by quenching the film dewetting. The ultraviscous liquid is likely to be a distinct phase, which might explain the absence of calorimetric glass transition for poor glass formers like hexane.  相似文献   

14.
Recently, it has been proposed that organic aerosol particles in the atmosphere can exist in an amorphous semi-solid or solid (i.e. glassy) state. In this perspective, we analyse and discuss the formation and properties of amorphous semi-solids and glasses from organic liquids. Based on a systematic survey of a wide range of organic compounds, we present estimates for the glass forming properties of atmospheric secondary organic aerosol (SOA). In particular we investigate the dependence of the glass transition temperature T(g) upon various molecular properties such as the compounds' melting temperature, their molar mass, and their atomic oxygen-to-carbon ratios (O:C ratios). Also the effects of mixing different compounds and the effects of hygroscopic water uptake depending on ambient relative humidity are investigated. In addition to the effects of temperature, we suggest that molar mass and water content are much more important than the O:C ratio for characterizing whether an organic aerosol particle is in a liquid, semi-solid, or glassy state. Moreover, we show how the viscosity in liquid, semi-solid and glassy states affect the diffusivity of those molecules constituting the organic matrix as well as that of guest molecules such as water or oxidants, and we discuss the implications for atmospheric multi-phase processes. Finally, we assess the current state of knowledge and the level of scientific understanding, and we propose avenues for future studies to resolve existing uncertainties.  相似文献   

15.
A compressible lattice model with holes, the glassy polymer lattice sorption model (GPLSM), was used to model the sorption of carbon dioxide, methane, and ethylene in glassy polycarbonate and carbon dioxide in glassy tetramethyl polycarbonate. For glassy polymers, an incompressible lattice model, such as the Flory–Huggins theory, requires concentration-dependent and physically unrealistic values for the lattice site volumes in order to satisfy lattice incompressibility. Rather than forcing lattice incompressibility, GPLSM was used and reasonable parameter values were obtained. The effect of conditioning on gas sorption in glassy polymers was analyzed quantitatively with GPLSM. The Henry's law constant decreases significantly upon gas conditioning, reflecting changes in the polymer matrix at infinite dilution. Treating the Henry's law constant as a hypothetical vapor pressure at infinite dilution, gas molecules in the conditioned polymer are less “volatile” than those in the unconditioned polymer. Flory–Huggins theory was used to model the sorption of carbon dioxide, methane, and ethylene in silicone rubber. Above the glass transition temperature, the criterion of lattice incompressibility for Flory-Huggins theory was satisfied with physically realistic and constant values for the lattice site volumes. © 1992 John Wiley & Sons, Inc.  相似文献   

16.
Many hydrogen-bonded liquids, especially glass-forming cases, display a dielectric relaxation behavior that differs qualitatively from that of other simple liquids. The majority of models aimed at explaining this unusual dielectric behavior associate the prominent Debye process with structural relaxation, viscous flow, and the glass transition. We perform dielectric and calorimetric studies of glass-forming mixtures of 2-ethylhexylamine and 2-ethyl-1-hexanol across the entire composition range. The kinetic glass transition temperature derived from the large dielectric Debye peak decreases, whereas that of the much smaller and asymmetrically broadened peak increases upon addition of amine. Only the latter feature coincides with the calorimetric glass transition results, implying that molecular structure and dielectric polarization fluctuate on time scales that can differ by orders of magnitude in many hydrogen-bonding liquids.  相似文献   

17.
The permeability of ethyl cellulose to water vapor and liquid water was measured as a function of temperature. A change of slope was found in the Arrhenius plots at about 50°C., close to the glass transition. The sorption isotherms showed essentially zero heat of mixing in agreement with other workers. The diffusion constants were measured in four ways, viz., sorption, desorption, time lag, and by dividing the permeability constants by the equilibrium solubility coefficients. The time lag method gave diffusion constants which were independent of concentration, whereas the other three methods led to diffusion constants which steadily decreased with concentration. All the methods, however, extrapolated to about the same value at zero concentration. The decreasing diffusivities are believed to be due to the clustering of water molecules in the polymer. However, no clustering appeared to take place under the conditions of the time lag measurements.  相似文献   

18.
DSC study of native and denatured biopolymers with different chemical and steric structure was carried out in a wide range of temperatures and water contents. It was shown that all the native and denatured humid biopolymers studied are glassy systems. The residues of native structures surviving after partial dehydration prevent the glass transition at the glass transition temperatures of the denatured biopolymers. In dehydrated native biopolymers the processes of melting and glass transition take place in the same temperature range that leads to a large change of the heat capacity across denaturation.  相似文献   

19.
Novel nematic and chiral nematic liquid crystals capable of vitrification have been synthesized using 1,3,5-cyclohexanetricarboxylic and (1R,3S)-(+)-camphoric acids as the base structures to which cyanotolan, cyanobiphenyl, methoxybiphenylbenzoate nematogenic groups, (S)-(-)-1-phenylethylamine and (S)-(+)-1,3-butanediol chiral moieties are attached. Once the glassy state is induced by quenching or controlled cooling from the isotropic state, these liquid crystals showed no detectable tendency towards crystallization upon heating through the glass transition temperature. In all cases, the ΔCp and ΔHc values resulting from the DSC heating scans are comparable to those previously reported for polymer analogues and other low molar mass glassy liquid crystals. In the nematic series with varying spacer lengths, both Tg and Tc are consistently lower than the linear polymer counterparts, in contrast to the siloxane-based systems. It was also demonstrated that cholesteric mesomorphism can be induced following one of the three approaches: chiral nematic mixture, chiral nematic cyclic cooligomer, and pendant nematogenic groups attached to a chiral ring.  相似文献   

20.
In this paper, we have incorporated Cd, In, and Sb in glassy Se80Te20 alloy to see the metal-induced effect of these additives on its glass network and kinetic properties. Specifically, we report results of systematic calorimetric measurements to study the glass transition kinetics. The glass transition behavior of glassy Se80Te20 and glassy Se80Te10M10 (M = Cd, In, Sb) alloys has been analyzed by differential scanning calorimetric technique at various heating rates. The activation energy (E g) of glass transition was determined using different kinetic models. Analysis of experimental data reveals that E g varies with the additive elements. The value of various kinetic parameters such as thermal stability, Hruby number, and fragility index has been calculated in non-isothermal mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号