首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work successfully prepared nanohybrids by in situ atom transfer radical polymerization (ATRP) of styrene from titanate nanotubes (TNTs). Fourier-transform infrared (FT-IR), pronton nuclear magnetic resonance spectroscopy (1H NMR), and thermal gravimetric analysis (TGA) were used to verify the successful graft of polystyrene (PS) chains from TNTs. Transmission electron microscopy (TEM) dis-played that the obtained PS-g-TNTs nanohybrids had a core-shell structure of TNT core and PS shell. The grafted PS ...  相似文献   

2.
Mesoporous diatomite platelets were employed to synthesize different polystyrene/diatomite composites by in situ polymerization of styrene via simultaneous reverse and normal techniques of atom transfer radical polymerization. Furrier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, scanning and transmission electron microscopy, gas and size exclusion chromatography were used to examine characteristics of polymer and composite. Addition of 3 wt% pristine mesoporous diatomite leads to increase of conversion from 79 to 93%, while control over molecular weight characteristics become worse.  相似文献   

3.
The in situ ATRP (atom transfer radical polymerization) "grafting from" approach was successfully applied to graft poly(methyl methacrylate) (PMMA) onto the convex surfaces of multiwalled carbon nanotubes (MWNT). The thickness of the coated polymer layers can be conveniently controlled by the feed ratio of MMA to preliminarily functionalized MWNT (MWNT-Br). The resulting MWNT-based polymer brushes were characterized and confirmed with FTIR, 1H NMR, SEM, TEM, and TGA. Moreover, the approach has been extended to the copolymerization system, affording novel hybrid core-shell nanoobjects with MWNT as the core and amphiphilic poly(methyl methacrylate)-block-poly(hydroxyethyl methacrylate) (PMMA-b-PHEMA) as the shell. The approach presented here may open an avenue for exploring and preparing novel carbon nanotubes-based nanomaterials and molecular devices with tailor-made structure, architecture, and properties.  相似文献   

4.
Polymer–silicate nanocomposites were synthesized with atom transfer radical polymerization (ATRP). An ATRP initiator, consisting of a quaternary ammonium salt moiety and a 2‐bromo‐2‐methyl propionate moiety, was intercalated into the interlayer spacings of the layered silicate. Subsequent ATRP of styrene, methyl methacrylate, or n‐butyl acrylate with Cu(I)X/N,N‐bis(2‐pyridiylmethyl) octadecylamine, Cu(I)X/N,N,N,N,N″‐pentamethyldiethylenetriamine, or Cu(I)X/1,1,4,7,10,10‐hexamethyltriethylenetetramine (X = Br or Cl) catalysts with the initiator‐modified silicate afforded homopolymers with predictable molecular weights and low polydispersities, both characteristics of living radical polymerization. The polystyrene nanocomposites contained both intercalated and exfoliated silicate structures, whereas the poly(methyl methacrylate) nanocomposites were significantly exfoliated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 916–924, 2004  相似文献   

5.
Surface-initiated reverse atom transfer radical polymerization (reverse ATRP) technique was used to synthesize well-controlled nanostructure of polymer brushes from silicon wafer. Kinetic studies revealed a linear increase in polymer film thickness with reaction time, indicating that chain growth from surface was a controlled process with a “living” characteristic. This technique provides a simple and efficient approach to create various nanostructures of polymer brushes potentially used for designing nanodevices. Analysis of the polymer brush layers was conducted using ellipsometry, XPS, AFM and contact angle measurements, respectively.  相似文献   

6.
原子转移自由基聚合(Atom transfer radical polymerization,ATRP)是一种发展较快的可控/活性聚合技术,现已广泛应用于聚合物分子结构设计及众多功能高分子材料的合成.本文在综述了ATRP的反应机理的基础上,介绍了引发剂、催化剂、配体、单体等对ATRP的影响,同时综述了降低(或去除)金属盐含量的绿色、高效ATRP聚合体系,如引发剂持续再生活化ATRP,电子转移生成(再生)活化剂ATRP,铁催化体系,光催化体系等.近年来发展的无金属光诱导的有机催化ATRP聚合体系也做了综述.  相似文献   

7.
A two-step procedure based on ultrasonic irradiation and reverse atom transfer radical polymerization (RATRP) for the synthesis of block copolymers is described. In the first step of the procedure, a stable chlorine-end-capped polymer is formed upon the ultrasonic irradiation of poly(methyl methacrylate) (PMMA) in dry benzene in the presence of a copper chloride/2,2′-bipyridine catalyst. Heating the system to 110 °C initiates the polymerization of the second monomer, styrene, and this results in the formation of the block copolymers. The degradation behavior of PMMA under ultrasonic irradiation has also been studied. The agreement of the experimentally obtained molecular weights and theoretical molecular weights and the unimodal shapes of the gel permeation chromatography curves of the block copolymers indicate the controlled nature of the RATRP process initiated by polymeric radicals formed by sonication. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 534–540, 2004  相似文献   

8.
Nickel‐mediated atom transfer radical polymerization (ATRP) and iron‐mediated reverse ATRP were applied to the living radical graft polymerization of methyl methacrylate onto solid high‐density polyethylene (HDPE) films modified with 2,2,2‐tribromoethanol and benzophenone, respectively. The number‐average molecular weight (Mn) of the free poly(methyl methacrylate) (PMMA) produced simultaneously during grafting grew with the monomer conversion. The weight‐average molecular weight/number‐average molecular weight ratio (Mw/Mn) was small (<1.4), indicating a controlled polymerization. The grafting ratio showed a linear relation with Mn of the free PMMA for both reaction systems. With the same characteristics assumed for both free and graft PMMA, the grafting was controlled, and the increase in grafting ratio was ascribed to the growing chain length of the graft PMMA. In fact, Mn and Mw/Mn of the grafted PMMA chains cleaved from the polyethylene substrate were only slightly larger than those of the free PMMA chains, and this was confirmed in the system of nickel‐mediated ATRP. An appropriate period of UV preirradiation controlled the amount of initiation groups introduced to the HDPE film modified with benzophenone. The grafting ratio increased linearly with the preirradiation time. The graft polymerizations for both reaction systems proceeded in a controlled fashion. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3350–3359, 2002  相似文献   

9.
The quantitative synthesis of tertiary amine-functionalized polymers by atom transfer radical polymerization is reported. Tertiary amine-functionalized polystyrene was prepared with the adduct of 1-(bromoethyl)benzene with 1-(4-dimethyl-aminophenyl)-1-phenylethylene as an initiator in the atom transfer radical polymerization of styrene in the presence of a copper (I) bromide/2,2′-bipyridyl catalyst system. The polymerization proceeded via a controlled free-radical polymerization process to afford quantitative yields of the corresponding tertiary amine-functionalized polystyrene with predictable number-average molecular weights (1600–4400), narrow molecular weight distributions (1.09–1.31), and an initiator efficiency of 0.95. The polymerization process was monitored by gas chromatographic analysis. The tertiary amine-functionalized polymers were characterized by thin-layer chromatography, size exclusion chromatography, potentiometry, and spectroscopy. All experimental evidence was consistent with quantitative functionalization via the 1,1-diphenylethylene derivative. Polymerization kinetic measurements showed that the polymerization reaction followed first-order-rate kinetics with respect to monomer consumption and that the number-average molecular weight increased linearly with monomer conversion. © 2001 John Wiley & Sons, Inc. J Polym Sci A Part A: Polym Chem 39: 2058–2067, 2001  相似文献   

10.
Simplified electrochemical atom transfer radical polymerization (seATRP) using CuIIN-propyl pyridineimine complexes (CuII(NPPI)2) is reported for the first time. In aqueous solution, using oligo(ethylene glycol) methyl ether methacrylate (OEGMA), standard electrolysis conditions yield POEGMA with good control over molecular weight distribution (Đm < 1.35). Interestingly, the polymerizations are not under complete electrochemical control, as monomer conversion continues when electrolysis is halted. Alternatively, it is shown that the extent and rate of polymerization depends upon an initial period of electrolysis. Thus, it is proposed that seATRP using CuII(NPPI)2 follows an electrochemically-triggered, rather than electrochemically mediated, ATRP mechanism, which distinguishes them from other CuIIL complexes that have been previously reported in the literature.

Simplified electrochemical atom transfer radical polymerization (seATRP) using CuII-pyridineimine complexes is reported and follows a previously unreported electrochemically triggered mechanism.  相似文献   

11.
Kinetics of atom transfer radical polymerization (ATRP) with the special emphasis on dynamics of activation and deactivation is discussed. Various mechanistic features of ATRP related to electron transfer processes are presented. Elementary reactions of ATRP process are analyzed.  相似文献   

12.
13.
Polymers prepared by atom transfer radical polymerization (ATRP) have well‐defined end groups, predetermined by the initiator used. A typical initiator is an alkyl halide from which the halogen is transferred to one chain end. To remove the halogen end group, dehalogenation with trialkyltin hydride has been used. Procedures for the removal of the polymer halogen end groups are described, one of them being a one‐pot reaction where the dehalogenation of the polymer chain ends occurs immediately after polymerization.  相似文献   

14.
Poly(ethylene‐g‐styrene) and poly(ethylene‐g‐methyl methacrylate) graft copolymers were prepared by atom transfer radical polymerization (ATRP). Commercially available poly(ethylene‐co‐glycidyl methacrylate) was converted into ATRP macroinitiators by reaction with chloroacetic acid and 2‐bromoisobutyric acid, respectively, and the pendant‐functionalized polyolefins were used to initiate the ATRP of styrene and methyl methacrylate. In both cases, incorporation of the vinyl monomer into the graft copolymer increased with extent of the reaction. The controlled growth of the side chains was proved in the case of poly(ethylene‐g‐styrene) by the linear increase of molecular weight with conversion and low polydispersity (Mw /Mn < 1.4) of the cleaved polystyrene grafts. Both macroinitiators and graft copolymers were characterized by 1H NMR and differential scanning calorimetry. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2440–2448, 2000  相似文献   

15.
Viruses and virus-like particles (VLPs) are useful tools in biomedical research. Their defined structural attributes make them attractive platforms for engineered interactions over large molecular surface areas. In this report, we describe the use of VLPs as multivalent macroinitiators for atom transfer radical polymerization. The introduction of chemically reactive monomers during polymerization provides a robust platform for post-synthetic modification via the copper-catalyzed azide-alkyne cycloaddition reaction. These results provide the basis to construct nanoparticle delivery vehicles and imaging agents using protein-polymer conjugates.  相似文献   

16.
A stable nitroxyl radical functionalized with an initiating group for atom transfer radical polymerization (ATRP), 4‐(2‐bromo‐2‐methylpropionyloxy)‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy (Br‐TEMPO), was synthesized by the reaction of 4‐hydroxyl‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy with 2‐bromo‐2‐methylpropionyl bromide. Stable free radical polymerization of styrene was then carried out using a conventional thermal initiator, dibenzoyl peroxide, along with Br‐TEMPO. The obtained polystyrene had an active bromine atom for ATRP at the ω‐end of the chain and was used as the macroinitiator for ATRP of methyl acrylate and ethyl acrylate to prepare block copolymers. The molecular weights of the resulting block copolymers at different monomer conversions shifted to higher molecular weights and increased with monomer conversion. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2468–2475, 2006  相似文献   

17.
FeCl3 coordinated by isophthalic acid was first used as a catalyst in the azobisisobutyronitrile‐initiated reverse atom transfer radical polymerization of acrylonitrile. N,N‐Dimethylformamide was used as a solvent to improve the solubility of the ligand. An FeCl3‐to‐isophthalic acid ratio of 0.5 not only gave the best control of the molecular weight and its distribution but also provided rather a rapid reaction rate. The effects of different solvents on the polymerization of acrylonitrile were also investigated. The rate of the polymerization in N,N‐dimethylformamide was faster than that in propylene carbonate and toluene. The molecular weight of polyacrylonitrile agreed reasonably well with the theoretical molecular weight in N,N‐dimethylformamide. The rate of polymerization increased with increasing polymerization temperature, and the apparent activation energy was calculated to be 59.9 kJ mol?1. Reverse atom transfer radical polymerization was first used to successfully synthesize acrylonitrile polymers with a molecular weight higher than 80,000 and a narrow polydispersity as low as 1.22. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 219–225, 2006  相似文献   

18.
Controlled radical polymerization of 4‐vinylpyridine (4VP) was achieved in a 50 vol % 1‐methyl‐2‐pyrrolidone/water solvent mixture using a 2,2′‐azobis(2,4‐dimethylpentanitrile) initiator and a CuCl2/2,2′‐bipyridine catalyst–ligand complex, for an initial monomer concentration of [M]0 = 2.32–3.24 M and a temperature range of 70–80 °C. Radical polymerization control was achieved at catalyst to initiator molar ratios in the range of 1.3:1 to 1.6:1. First‐order kinetics of the rate of polymerization (with respect to the monomer), linear increase of the number–average degree of polymerization with monomer conversion, and a polydispersity index in the range of 1.29–1.35 were indicative of controlled radical polymerization. The highest number–average degree of polymerization of 247 (number–average molecular weight = 26,000 g/mol) was achieved at a temperature of 70 °C, [M]0 = 3.24 M and a catalyst to initiator molar ratio of 1.6:1. Over the temperature range studied (70–80 °C), the initiator efficiency increased from 50 to 64% whereas the apparent polymerization rate constant increased by about 60%. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5748–5758, 2007  相似文献   

19.
Polysilsesquioxane with phenyl and chloromethylphenyl groups (PCPSQ) was prepared readily from phenyltrimethoxysilane and [2‐(chloromethylphenyl)ethyl]trimethoxysilane under acidic conditions. Polymerization with chloromethylphenyl groups on PCPSQ with methyl methacrylate (MMA) was conducted in the presence of a catalytic amount of copper(I) bromide and (−)‐sparteine. Atom transfer radical polymerization yielded a graft polymer (PCPSQ‐g‐MMA) efficiently, and no gelation was observed. The process was also applied to the preparation of graft block copolymers on PCPSQ with several methacrylate monomers. An advantage of the graft hybrid polymers was shown in improved thermal behavior. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4212–4221, 2004  相似文献   

20.
Controlled polymerization of (meth)acrylamides was achieved by ATRP using the initiating system methyl 2‐chloropropionate/CuCl/tris(2‐dimethylaminoethyl)amine. Linear increase of molecular weights with conversion and low polydispersity (Mw/Mn < 1.2) were obtained in toluene, at room temperature, when N,N‐dimethylacrylamide was used as a monomer. However, the polymerization reached limited conversion, which could be enhanced by increasing the catalyst/initiator ratio. The limited conversion is not due to the loss of the active chains, but rather to the loss of activity of the catalytic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号